LOGO

دانشنامه مهندسی مواد
مواد.ریخته گری.متالورژی.جوشکاری
  • banner 240x80px
  • banner 240x80px
  • banner 240x80px

مروری بر اهمیت و خواص چدنهای با گرافبت های فشرده

"معرفی اولیه" :

 چدن با گرافیت فشرده و یا ""Compacted Graphite Cast Iron محدوده ای از چدنها هستند که از نظر خواص فیزیکی و مکانیکی بین چدنهای خاکستری و داکتیل قرار دارند و به دلیل دارا بودن ترکیبی از استحکام، هدایت حرارتی بالا و قابلیت ریخته گری مناسب مورد توجه ریخته گران قرار گرفته است. کارآیی CGI در اکثر موارد کاربردی مورد تایید قرار گرفته است، اما تولید انبوه این نوع چدن به علت تغییرات وسیع ریز ساختار و به خاطر به کار بردن تیتانیم برای تثبیت ساختار گرافیت فشرده، محدود شده بود.[1]

" منظور از چدن با گرافیت فشرده این است که چدن عاری از گرافیت ورقه ای و دارای 20% گرافیت کروی و 80% گرافیت فشرده باشد".[2]

در حقیقت پیدایش چدنهای با گرافیت فشرده شاید به طور اتفاقی در جهت ایجاد گرافیتهای کروی حاصل شده باشد.

در واقع  هنگام تولید چدنهای نشکن در مواردی که مقدار منیزیم کم بوده این ساختار گرافیت پدید آمده و محققین با این ساختار گرافیت مواجه شدند و کم کم به فکر بازرسی بیشتر این ساختار و یافتن خواص آن افتادند.

تولید صنعتی این چدنها برای مصارف صنعتی در سال 1965 و توسط R.D.Schelleng پتنت شد.

ولی قابل توجه اینکه امروزه طراحان موتور با افزایش میزان فشار اشتعال در داخل موتور موفق به بهبود کارکرد موتور، کاهش میزان مصرف سوخت و آلاینده ها شده اند. به همین خاطر در ساخت موتورها بایستی از مواد با استحکام بالا استفاده شود که چدن خاکستری جوابگوی این مسیله نیست.

چدن داکتیل نیز به خاطر هدایت حرارتی پایین آن مورد توجه قرار نگرفته است. چدن با گرافیت فشرده تنها نوع چدن است که هم خاصیت استحکام و هم هدایت حرارتی بالا را دارا می باشد. امروزه شرکت اتومبیل سازی  Ford پیشتاز در امر تولید موتور از جنس CGI است.

بدنه و سر سیلندر موتور مستلزم ایجاد ساختار تقریبا یکنواخت گرافیت و عدم استفاده از تیتانیم به علت تضعیف خاصیت ماشینکاری آن است.

 بعضی از نمونه هایی کاربردی CGI  عبارتند از : "مانیفلد خروجی دود، سر سیلندر، بدنه موتور، اجزای سیستم ترمز و قطعات مقاوم به خستگی حرارتی".[1]

ریز ساختار " : "CGI

 گرافیتها در چدن CGI به صورت کرمی شکل (Worm-Shape ) دیده می شوند این ذرات مانند گرافیتهای ورقه ای در جهات تصادفی آرایش یافته اند با این تفاوت که نسبت به آن کوتاهتر و ضخیم تر و گوشه های آن گرد می باشد.( در شکل 1 و 2 نمونه ای از این ساختار دیده می شود.)

 

 

شکل1: شکل گرافیت های فشرده با  10 % کرویت در متالوگرافی

 

 

 

شکل 2: تصویر سه بعدی از مورفولوژی گرافیت[2]

 با  این که ذرات کرمی شکل (worm shape) به حالت دو بعدی به صورت مجزا دیده می شوند ولی در حالت سه بعدی با گرافیت های کناری خود در فاز زمینه مرتبط هستند.

مورفولوژی پیچیده مرجانی شکل این نوع گرافیتها همراه با گوشه های گرد سطح نا صاف، منجر به چسبندگی قوی ذرات با فاز زمینه می گردد که به خاطر همین مسئله از شروع و اشاعه ترک جلوگیری می کند و موجب بهبود خواص مکانیکی می گردد.

 در شکل 3 می توانید چگونگی مورفولوژی گرافیت را در سه نوع چدن خاکستری،  گرافیت فشرده و نشکن مورد بررسی قرار دهید.

 

 

 

 

شکل 3: عکس های SEM از گرافیتهای کروی، فشرده و خاکستری[1]

 

حضور گرافیت های کروی در ریز ساختارهای چدنهای CGI اجتناب ناپذیر می باشد. با افزایش میزان گرافیت کروی، استحکام و سختی افزایش ولی قابلیت ریخته گری، ماشینکاری و هدایت حرارتی کاهش می یابد. فاز زمینه این نوع چدنها بر حسب نوع مصارف آن و خواص مورد نظر قطعه می تواند کاملا پرلیتی، فریتی و یا مخلوطی از هر دو باشد.

یکی از مهمترین مسایل در ارتباط با این چدن تعیین میزان فشردگی و درصد کروی شدن است. می توان از فرمولهای معتبر نیز برای تعیین میزان درصد گرافیت کروی در مقطع خاصی از قطعه استفاده کرد، در معادله زیر می توان با استفاده از مساحت گرافیتهای کروی به کل مساحت گرافیتها ، درصد کرویت را تعیین کرد.

ترکیب شیمیایی:

 مشخصات و خواص چدن با گرافیت فشرده در دامنه وسیعی از کربن معادل هیپویوتکتیک یعنی 7/3% و تا هایپر یوتکتیک یعنی 7/4%، با میزان کربن 4-1/3%  و میزان سیلیسیم 3-7/1% تعریف شده است .

 با مقدار سیلیسیم ثابت، انتخاب کربن معادل پایینتر احتمال تبریدی شدن را افزایش می دهد و باعث شمارش ندول کمتری می گردد. با مقدار کربن معادل ثابت، مقدار سیلیسیم بالاتر، تعداد گرافیتهای کروی را افزایش می دهد. مقدار کربن و سیلیسیم بهینه را می توان از روی شکل زیر انتخاب نمود:

 

 شکل 4: تعیین میزان سیلیسیم و کربن بهینه برای تولید CGI

 

کربن معادل بهینه بایستی بر مبنای ضخامت قطعه انتخاب شود، برای این ضخامت معین، کربن معادل بالاتر ایجاد گرافیت شناور و کربن معادل پایین تر تمایل به تبریدی شدن را افزایش می دهد.

برای ضخامت های 10-40 mm، ترکیبات یوتکتیک (CE=4.3) توصیه می شود تا خواص مطلوبی در قطعه به دست آید . مقدار منگنز می تواند 0.1-0.6% باشد. فسفر باید پایین تر از 0.06% باشد چون میزان بالاتر از آن باعث کاهش چقرمگی می شود.

 هر چند چدن CGI با درصد گوگرد بالا حدود (0.07-0.12%) تولید شده است، اما احتمالا کاهش گوگرد به 0.01-0.025% اقتصادی تر می باشد. چنانچه مقدار گوگرد زیاد باشد مصرف آلیاژ افزایش می یابد. در ضمن وضعیت ترکیب شیمیایی نیز دگرگون می گردد زیرا عناصر مخصوص عملیات باید با گوگرد باقیمانده متوازن گردد. مقدار گوگرد باقیمانده پس از عملیات حدود 0.01-0.02% خواهد بود. به منظور حصول اطمینان از تشکیل گرافیتهای فشرده (کرمی شکل) لازم است همانند فرآیند تولید چدن نشکن از عناصری برای عملیات چدن سازی استفاده گردد. این عناصر عبارتند از"منیزیم، عناصر نادر خاکی ( سریم، لانتانیم و غیره) ، کلسیم، تیتانیم و الومینیوم".

 

 ذوب:

مواد مورد نیاز برای تولید چدن CGI در اصل همانند موادی می باشند که برای تولید چدن SG به کار می روند. برای ذوب کردن چدن CG از کوره های القایی ، کوپل، قوس الکتریکی استفاه می شود. نیازمندیهای مربوط به مواد، گرم نمودن زیاد و گوگرد زدایی قبل از آماده نمودن نهایی ذوب، مشابه چدن نشکن است. تهیه مذاب برای ساختن قطعات چدنی با گرافیت فشرده به کمک فرو سیلیس منیزیم انجام می گیرد.

حضور عناصر خاکی نادر در کنار آلیا‍ژ فروسیلیس منیزیم باعث افزایش فشردگی گرافیت و در نتیجه باعث ایجاد خواص مکانیکی بهتر می شود.

روش های مختلفی برای تولید چدن گرافیت فشرده در صنایع ریخته گری ابداع شده است. متداولترین روش عملیات مذاب پایه با عناصر کروی کننده مانند     "Ce ,Mg" و ضد کروی کننده مانند" " Sn ,Ti ,Al می باشد. استفاده از عناصر آلومینیوم و تیتانیم و قلع موجب تشکیل کاربید و پرلیت در قطعات صنعتی می شوند که بایستی برای ماشینکاری بهتر دارای زمینه فریتی باشند.

 

"عملیات ذوب":

 مهمترین روشهای تولید چدن CG می تواند به قرار زیر طبقه بندی گردند:

1-   عملیات ذوب با آلیاژهای منیزیم

2-   عملیات ذوب با آلیاژهای فشرده کننده و همچنین آلیاژهای مانع فشرده شدن گرافیتها

3-   عملیات ذوب با آلیاژهایی که پایه آنها فلزات نادر خاکی یا آلیاژهای نادر خاکی –منیزیم می باشد.

4-  عملیات بر روی چدن اصلی حاوی مقادیر نسبتا بالایی از عناصر گوگرد و آلومینیوم همراه با الیاژهای حاوی عناصر فشرده کننده گرافیت.

هنگامیکه منیزیم باقیمانده 0.013-0.022%  کنترل و ثابت گردد در این صورت چدن CG حاصل می شود. کنترل مقدار منیزیم  در حد فوق هنگام عملیات در پاتیل مشکل می شود زیرا چنانچه مقدار منیزیم باقیمانده از مقدار فوق افزونتر شود چدن نشکن حاصل گردیده و در صورتی که این مقدار کاهش یابد چدن به دست آمده چدن خاکستری خواهد بود.

"مواد قالبگیری":

 همانند جدن نشکن از کلیه موادی که برای تولید SG به کار گرفته می شود در این زمینه نیز می توان استفاده کرد. این مواد عبارتند از ماسه مخلوط با بنتونیت، ماسه با سیمان و ماسه با رزین .

مواد مذاب چدنهای گرافیت فشرده حساسیت بیشتری نسبت به جذب گوگرد از قالب نسبت به مواد مذاب چدن نشکن دارد. بر خلاف چدن نشکن چدن CG نباید بیش از اندازه عملیات گردد. هنگام استفاده از ماسه رزینی بازیابی شده ، با اسید پاراتولو سولفونیک (PTS) به عنوان کاتالیست سخت کننده باید دقت زیادی معطوف گردد  چون باعث افزایش میزان گوگرد جذب شده به مذاب می گردد.[1]

 

"خواص مکانیکی و فیزیکی":

 *سیالیت چدن بستگی زیادی به میزان کربن، سیلیسیم و دما دارد. افزون بر آن مورفولوژی انجماد در این زمینه نقش دارد . چدن با گرافیت ورقه ای دارای بهترین سیالیت می باشد و چدن نشکن از این دیدگاه بدترین وضع را دارد . همانطور که انتظار می رفت چدن CG بین این دو وضعیت واقع شده است.

 *نظر به این که چدنهای CG شکل با CE یکسان نسبت به چدنهای خاکستری دارای استحکام بیشتری می باشند. در مورد  مشخصات انقباضی این چدن باید گفت که  تولید قطعات CGI سالم و عاری از کشیدگی های ریز داخل و خارجی نسبت به چدنهای نشکن آسانتر بوده و کمی از چدنهای خاکستری مشکلتر می باشد. به علت پایین بودن مقدار انقباض که چدن CG امکان عدم استفاده از تغذیه مقدور می باشد. به این ترتیب هزینه ساخت با اصلاح مدل هنگام تبدیل مواد از خاکستری به CG کاهش خواهد یافت و می توان با همان سیستم راهگاهی بکار رفته در چدن خاکستری، چدن کرمی شکل را (گرافیت فشرده) تولید کرد. در واقع نسبت به چدن نشکن انقباض حاصل از انجماد (Shrinkage) کمتری داشته و تغذیه های محدودتری نیاز دارد که در نتیجه راندمان ریختگی ان بالاتر خواهد بود.

*چدن CG در مقایسه با چدن خاکستری دارای انعطاف پذیری و استحکام بالاتری می باشد. استحکام کششی و تنش تسلیم این چدن، کمی پایین تر از چدن نشکن بوده و بسیار بیشتر از چدن با گرافیت ورقه ای می باشد.

                      چدن کروی < مدول الاستیسیته چدن CG < چدن ورقه ای

*استحکام چدنهای با گرافیت فشرده با افزایش ضخامت کاهش می یابد.

*چون هدایت حرارتی گرافیت در چدنها بیشتر از زمینه فلزی می باشد، پس شکل، مقدار، اندازه و پراکندگی گرافیت های موجود در چدن نقش تعیین کننده در کنترل هدایت حرارتی دارد. در چدنهای نشکن که گرافیت کروی و منفصل دارند، هدایت حرارتی کمتر است.

*هدایت حرارتی با زمینه فریتی بیشتر از هدایت حرارتی با زمینه پرلیتی است.

*هدایت حرارت خوب و استحکام کششی بالای این چدن ، کاربردش را در درجه حرارتهای بالا مناسب می سازد که باید در برابر رشد و پوسته شدن مقاومت از خود نشان دهد.

*برای ساخت قالب های چدنی و قالب شمش ریزی در صنعت فولاد، سر سیلندرهای موتورهای دیزلی و نیز محافظ احتراق توربین بسیار مناسب هستند.

افزایش مقدار سیلیسیم تا  2.6% موجب بهبود استحکام و سختی در چدن به صورت ریخته و آنیل شده می گردد که علت آن افزایش مقدار فریت می باشد. سیلیسیم به صورت محلول جامد در فاز فریت رسوب کرده و موجب افزایش استحکام آن می شود.

*چدن با گرافیت فشرده با ساختار زمینه فریتی و پرلیتی دارای حالت الاستیک خطی است و حد ارتجاعی ان از چدن نشکن کمتر است.[3]

 

 

شکل5: استحکام کششی نهایی و 0.2% استحکام تسلیم چدنهای CGI با 85-100% پرلیت به عنوان تابعی از دما و ندولاریته.[3]

 

 

شکل6: تاثیر میزان پرلیت بر استحکام نهایی و استحکام تسلیم 0.2% چدنهای CGI با 0-10% ندولاریته.[3]

 

"کاربرد های  عملی در صنعت":

 تولید و کاربردهای عملی CGI در ابتدای سال 1960 آغاز گردید. مثال بارز این موارد منیفلد های اگزوز، اجزا ترمز، محفظه های پمپ و فلایویل ها می باشند.

با توجه به گزارش AFS Metal Casting Forecast حدود 66000 تن از محصولات CGI در طول سال 2001در آمریکا تولید شده است. به طور نمونه دو نوع بلوک سیلندر از جنس CGI در همان زمان تولید گردید:

"بلوک سیلندر Audi33Lit V8TDI وپوسته موتوردیزلی BMW3 LitV8D"

از کابردهای چدن CGI ، تولید با حجم بالای قطعات پیچیده ای مانند بلوک سیلندرها و سر سیلندرها می توان نام برد که دارای مشخصات ریز ساختاری محدودی بوده و همچنین مجاز به استفاده از تیتانیم به منظور افزایش میزان قابلیت ماشینکاری نیز نمی باشند.

به طوریکه حجم بالایی از تولید بلوک سیلندر CGI در طی سال 2003 جهت مصارف کمپانی های فورد و آئودی صورت پذیرفته است.

مشخصات مربوط به ریز ساختار بسته به شرایط کاری و نیازهای مربوط به تولید انتخاب می گرددند به طور مثال تولید منیفلدهای اگزوز از جنس CGI به میزان حدود 50% کروی شدن گرافیت را به همراه خواهد داشت به طور کلی می توان گفت که کروی شدن گرافیت ها در تولید مناسب و بدون عیوب قطعات ریختگی و همچنین عدم آسیب در هنگام ماشینکاری بسیار موثر می باشد به طور مثال، شرکت دایملر کرایسلر با افزایش میزان کروی شدن گرافیتها تا 50% عیوب ترک را در قطعات  bed plate  کاهش داده است.

 در این مورد میزان کروی شدن گرافیتها بالاتر از حد مجاز می باشد چرا که ماشینکاری این قطعه تنها به فرز کاری  و ایجاد سوراخهای کوچک توسط دریل محدود می گردد و قطعه تحت بارگذاری حرارتی قرار نمی گیرد.

هم اکنون تولید منیفلدهای CGI در شرکت tupy"" با افزودن 0.1-15 % تیتانیم امکانپذیر شده است، افزودن تیتانیم اثر مخربی در رشد گرافیتها داشته و برای تولید چدنهای با گرافیت فشرده بایستی که مقدار زیادی منیزیم به مذاب اضافه شود، حضور بیشتر منیزیم این اطمینان را می دهد که تیتانیم مانع از رشد گرافیتهای کروی نشده و سبب ایجاد گرافیتهای ورقه ای شکل نمی شود.

 زمانی که از فرآیند افزودن تیتانیم برای تولید مانیفولد استفاده می شود، تشکیل نهایی آخالهای کربو نیترید سخت باعث تشکیل یک پوشش ساینده روی سطح شده و اجازه ماشینکاری زیادی را همانند بلوکهای سیلندر و سر سیلندر نمی دهد تاثیر تیتانیم و قابلیت قطعات CGI زمانی آشکار می شود که بدانیم برای افزودن هر 0.1% تیتانیم اضافه شده بیش از هزار آخال کربو نیترید تیتانیم در هر میلیمتر مربعی از سطحی که ماشینکاری می شود وجود خواهد داشت.

حتی با افزایش مقادیر کم تیتانیم به طور شگرفی عمر ابزار در طول عملیات برش ممتد کاهش می یابد بنابر این این امر بدان معنا است که حضور تیتانیم در فرایند تولید  CGI نمی تواند برای تولید بلوکهای سیلندر و سر سیلندر مورد استفاده قرار گیرد.[2]

"نکته مهم":

چدن با گرافیت فشرده می تواند با مقادیر متغیر پرلیت به تناسب کاربرد مورد نظر تولید شود، منیفلدها نیاز به بیش از 95% فریت به منظور جلوگیری از افزایش دمای بالا را دارند در مقایسه بلوکهای سیلندر و سر سیلندر به طور معمول با میزان پرلیت بالا به منظور افزایش استحکام و سختی تولید می شوند.

چدن های با گرافیت فشرده ممکن است با 98-60% پرلیت به منظور فراهم آوردن میزان سختی مشابه BHN (190-225 ) مانند چدنهای خاکستری متداول مورد توجه واقع شوند، به هر حال ساختارهای تمام پرلیت (100% پرلیت) برای قطعات کمی کاربرد داشته و منجر به ایجاد خواص مکانیکی بالاتری در قطعات می گردند.

 

"در مقایسه با خاکستری مزایای "CGI :

*کاهش ضخامت دیواره با توجه به بارگدازی مشابه، از نقطه نظر طراحی مشخص شده است که پتانسیل کاهش ضخامت مقاطع دیواره های محفظه های سیلندر در CGI بیشتر از خاکستری است،

* افزایش میزان بارگذاری با توجه به طراحی موجود،

* کاهش میزان فاکتورهای ایمنی با توجه به میزان کمتر تغییرات در خواص قطعات،

* کاهش میزان ترک ترد در جابجایی مونتاژ و سایر موارد با توجه به میزان انعطافپذیری بالاتر،

* کاهش میزان ترک ترد در جابجایی و مونتاژ و سایر موارد با توجه به میزان انعطاف پذیری،

* کاهش میزان ترک گرم در حین تخلیه قطعات،

* استحکام بالاتر و نبودن نیاز به فرایند آلیاژسازی.

"در مقایسه با نشکن مزایای CGI ":

*قابلیت ریخته گری بهتر قطعات با ترکیب پیچیده تر،

* بهبود در میزان استحکام ،

* قابلیت تا 20% کاهش میزان تجمع تنش با توجه به میزان هدایت حرارتی بالاتر و نزول پایین تر، بهبود در مقادیر گرمای مبادله شده.[3]

 منابع:

1- AFS Transaction 2000 " What's the CGI?"

2- تولید قطعات چدنی با گرافیت فشرده در صنایع خودروسازی (ماهنامه صنعت ریخته گری شماره 10 آبان 83 )

3- "Mechanical and physical properties for engine design" Dr. Steve Dawson (Based on a paper presented at: Werkstoff und Automobilantrieb) Materials in power train VDI ( verein deutscher Ingenieure) Dresden Germany 28-29 october 1999)

 

 

 برای اطلاعات بیشتر به زبان انگلیسی میتوانید به سایت زیر مراجعه کنید

www.Sintercast.com


دسته بندی :

چدن ها و مبانی سیستم های راهگاهی

 

چکيده مقاله:
در میان انواع فلزات و آلیاژ های ریختگی چدن ها بیشترین مقدار مصرف را دارا بوده و اندوخته های علمی و تجربی درباره آن ها نیز بسیارند . برای آنان که در ارتباط مستقیم و یا غیر مستقیم با ساخت قطعات چدنی هستند این احساس وجود دارد که چدن ریزی در مقایسه با دیگر فلزات ریخته گری روش ساده ای است . کیفیت هر محصول تولیدی ریشه در نیاز و فرهنگ آن جامعه دارد . کشوری که متکی به سیستم حمل ونقل دستی است می تواند قطعات ریختگی با کیفیت نازل را پذیرا باشد . در ارتباط با تکنولوژی تولید قطعات چدنی چنانچه مرحله طراحی سیستم های راهگاهی و تغذیه گذاری مهمترین جزء این مراحل نباشد از اصولی ترین قسمت های آن خواهد بود . امروزه این مرحله به عنوان ابزار بسیار مفیدی جهت کنترل معایب در قطعات بویژه عیوب انقباضی و بهره دهی قطعات ریختگی به شمار می رود. طراحی راهگاها و تغذیه بدون توجه به متغیرهای بسیاری که در مرغوبیت قطعات ریختگی موثر است انجام گیرد که متغیرهایی نظیر کیفیت متالوژیکی مذاب و نوع مخلوط سازنده قالب و روش ریخته گری در ارائه طرح سیستم راهگاهی و تغذیه مؤثر است لذا طرح باید این عوامل را شناساوی کرده و بر اساس شناخت کافی آن ها نوع سیستم لازم را انتخاب کند . لذا موفقیت هنگامی بدست می آید که طراح و یا گروه طراحی در ارتباط نزدیک با بخش تولید قرار گرفته و نوعی سیستم راهگاهی و تغذیه را انتخاب کند که حتی المقدور بتواند معایب و نارسائی های مرحله تولید را جبران کند

مبانی سیستم های راهگاهی

یک از عوامل لازم در تهیه قطعات ریخته گری سالم آگاهی از چگونگی رفتار مذاب از هنگام ورود به داخل قالب تا مرحله خاتمه انجماد آن است .  

با نگرشی به قطعات ریختگی بجای مانده از زمان های بسیار دور می توان دریافت که ریخته گران گذشته تا چه حد به اهمیت راهگاه گذاری صحیح قطعات توجه داشته اند .

مطالعه سیستم های راهگاهی ( Gating systems ) بدون آشنایی به رفتار انقباضی مذاب و مسئله تغذیه گذاری ( Risering ) قطعات امکان پذیر نیست . به همین دلیل لازم است در طراحی سیستم های راهگاهی چگونگی انقباض مذاب ( Liquid shirinkage ) قبل از شروع انجماد و در مرحله انجماد ( Solidification shrinkage ) نیز مد نظر قرار می گیرد .

و ظایف یک سیستم راهگاهی مناسب به شرح ذیل است :

1- انتقال مذاب از بوته به محفظه قالب با سهولت انجام پذیرد .

2- حرکت مذاب در مجاری و راهگاها با حداقل حرکت اغتشاشی انجام گیرد .

3- مذاب به گونه ای وارد قالب گردد که سردترین قسمت بار به دورترین قسمت محفظه قالب رفته و گرم ترین آن در راه گاها باقی بماند این حالت موجب می شود تا از ایجاد حفره های انقباضی مذاب در قطعه ریخته گری جلوگیری گردد .

4- راهگاها آنقدر بزرگ در نظر گرفته شوند که مذاب بتواند اولاً محفظه قالب را کاملا پر کرده و ثانیا به تغذیه قطعات ریختگی کمک کند .

معایبی که در اثر عدم دقت در طراحی سیستم های راهگاهی امکان وجود دارند عبارتند از :

1- وارد شدن ماسه شلاکه ( Slag ) و ناخالصی ها ( Impurities ) به همراه مذاب به محفظه قالب خصوصا تجمع در بالا قالب .

2- خشن شدن سطح قطعه ریختگی

3- جذب گاز در مذاب و ایجاد مک و حفره در قطعه ریختگی

4- اکسید شدن بیش از حد مذاب

5- ایجاد حفره های انقباضی در قطعه ریختگی

6- نفوذ مذاب در ماهیچه ها

قبل از پرداختن به چگونگی طراحی یک سیستم راهگاهی باید اجزاء مختلف آن را شناخت که در شکل اجزاء یک سیستم راهگاهی نشان داده شده اند .

اصل بقاء انرژی : قانون برنولی ( Bernoulli,s equation )

در یک سیستم بسته جمع جبری انرژی همواره مقدار ثابتی می باشد . درون این سیستم بسته امکان تبدیل صورت های مختلف انرژی به یکدیگر وجود دارد در حالی که جمع جبری انرژی های موجود در سیستم ثابت می ماند .

هر مایع در حال جریان درون یک سیستم بسته دارای سه نوع انرژی می باشد :

الف ) انرژی پتانسیل :

      عبارت است از انرژی واحد وزنی از مایع که در ارتفاع h از صفحه مبنا قرار گرفته است .

Ep = h

ب ) انرژی فشاری

            انرژی حاصل از فشاری است که بر واحد وزن مایع اعمال می گردد .

Epr = p/γ

که در آن گاما وزن مخصوص و ح فشار می باشد .

ج ) انرژی تحرکی

           توسط عزم حرکتی واحد وزن مایع متحرکی که با سرعت v در حال جریان است بیان می گردد .

Ek = v2/2g

جریان آرام و اغتشاشی مایع ( Laminar and turbulent flow )

جریان هر مایعی درون یک کانال می تواند به دو صورت آرام یا اغتشاشی انجام گیرد . حرکت مایع بصورت آرام هنگامی است که سرعت جریان آن در یک کانال از دیواره کانال تا مرکز آن به تدریج افزایش یابد .

از نظر تئوری بر اساس این تعریف سرعت جریان مذاب در دیواره راهگاهها را می توان صفر در نظر گرفت و در مرکز سطح مقطع سرعت در حداکثر مقدار خود می باشد .

سرعت پرشدن قالب از مذاب و طراحی تنگه ( Choke )

به کمک بعضی از قوانین فیزیکی ذکر شده می توان سرعت پر شدن قالب از مذاب را محاسبه کرد . برای انجام این منظور لازم است سطح مقطع آن قسمتی از راهگاهها را که کمترین حجم مذاب در واحد زمان را می تواند از خود عبور دهد بدست آوریم . این سطح مقطع اصطلاحا تنگه نامیده شده و با Ac  نشان داده می شود .

در اکثر موارد تنگه در نزدیکی سطح جدایش قالب تعبیه می گردد . شکل زیر یک سیستم راهگاهی را نشان می دهد که تنگه در محل تماس راهگاه اصلی ( R ) و راهگاه فرعی ( G ) احداث گردیده است .

H ارتفاع مذاب از سطح بالای حوضچه تا خط جدایش و S راهگاه بارریز و L ارتفاع تا بالای محفظه قالب و X ارتفاع مذاب پرشده در بالای قالب از سطح جدایش می باشد که متغیر است .

شیب دادن راهگاه بارریز( The tapering of the sprue )

راهگاه بارریز یک کانال عمودی است که مذاب را از حوضچه به داخل راهگاه اصلی هدایت می کند . در شروع ریختن مذاب سرعت جریان آزاد مذاب در راهگاه بارریز به همراه افزایش فاصله آن از سطح حوضچه افزایش می یابد .

  

به هر حال در صورتی که راهگاه بارریز به جای مخروط ناقص به صورت استوانه ای باشد ایجاد فضای خالی در طول راهگاه بارریز تنها در مراحل اولیه ریختن مذاب به داخل قالب می باشد . علت این امر آن است که به علت وجود تنگه در سیستم راهگاهی مذاب ریخته شده در قالب بلافاصله باعث پر کردن کامل راهگاه بارریز می گردد به همین دلیل در سیستم راهگاهی صحیح طراحی شده برای چدن ریزی در موارد بسیار ی از راهگاه های بارریز بدون شیب استفاده می گردد .

فشار و سرعت در راهگاه های فرعی

بطور کلی دو نوع سیستم راهگاهی از نظر فشار روی مذاب و سرعت جریان مذاب وجود دارد که عبارتند از : سیستم فشاری و غیر فشاری

ویژگی سیستم فشاری آن است که سرعت سیلان مذاب در راهگاه فرعی و بر مبنای کل ارتفاع فرواستاتیکی مذاب در قالب تعیین می شود در حالی که سیستم غیر فشاری عامل تعیین کننده این سرعت ارتفاع مذاب در راهگاههای فرعی می باشد که کاملا از مذاب پر نباشد و از طرف دیگر سیستم راهگاهی را هنگامی فشاری گویند که کنترل میزان مذاب ورودی به محفظه قالب توسط سطح مقطع بین راهگاه اصلی و همه راهگاههای فرعی انجام گیرد در این سیستم مجموع سطوح مقاطع راهگاه های فرعی کمتر از سطح مقطع راهگاه بارریز می باشد .

در سیستم غیر فشاری کنترل میزان مذاب ورودی به محفظه قالب توسط سطح مقطع تحتانی راهگاه بارریز و قسمتی از راهگاه اصلی که در مجاورت راهگاه بارریز قرار دارد انجام می گیرد . در این سیستم مجموع سطوح مقاطع راهگاههای فرعی از سطح مقطع راهگاه بارریز بیشتر بوده و در نتیجه فشار مذاب در راهگاه بارریز گرفته می شود .

محاسبات سیستم راهگاهی

طراحی و محاسبات سیستم راهگاهی بدون آشنائی به مبانی فیزیک و متالوژی چنانچه غیرممکن نباشد حداقل بیسار مشکل است .

در روش قالب گیری ماشینی مواردی دیده می شود که برای پرهیز از مخارج زیاد تهیه تعدادی مدل مشابه قطعات با اشکال مختلف را روی یک صفحه مدل قرار می دهند این عمل توصیه نمی گردد زیرا تنوع قطعات ریختگی در یک قالب طراحی سیستم راهگاهی و تغذیه گذاری قطعات را با مشکلات زیادی روبرو می سازد .

بهترین طرح ساده ترین طرح است لذا بهتر است تا حد امکان از قطعات مشابه در یک قالب استفاده گردد.

علاوه بر مطالب فوق توجه به نکات زیر در طراحی موفقیت آمیز راهگاه و تغذیه قطعات ریخته گری چدنی لازم است :

1- از حداکثر فضای قالب به منظور استفاده از حداکثر بهره دهی قطعات استفاده کنیم ضمن آنکه جالی خالی مناسب برای راهگاهها و تغذیه ها باقی بگذاریم .

2- به مرغوبیت مذاب و کیفیت قالب توجه داشته باشیم .

3- سطح جدایش قطعه ریختگی را به گونه ای انتخاب کنیم که نیاز به ماهیچه گذاری را به حداقل رساند .

4- تمام قطعات یا اکثر آن ها در درجه بالائی قرار گیرند تا پرشدن آن ها از مذاب به آرامی انجام شود .

5- به منظور استفاده از حداکثر بهره دهی تغذیه ها بهتر است از یک تغذیه برای دو یا چند قطعه ریختگی استفاده گردد .

وظیفه اصلی یک سیستم راهگاهی آن است که مذابی تمیز و عاری از شلاکه و ناخالصی ها را به محفظه قالب منتقل کند به این منظور سه نکته زیر باید رعایت شوند :

1-       ایجاد ارتباط مذاب موجود در محفظه قالب با فضای خارج

2-       گرفتن شلاکه و ناخالصی ها

3-       ایجاد شرائطی که گاز ها و هوای موجود در قالب را بتوان به فضای خارج منتقل کرد

سیستم فشاری ( Pressurized gating system )

در این سیستم مجموع سطوح مقاطع راهگاههای فرعی کمتر از سطح مقطع راهگاه بارریز است زیرا در چنین حالتی همواره فشاری در پشت مذاب در حال جریان موجود خواهد بود . در این سیستم راهگاهها بلافاصله از مذاب پر شده و فشار پشت فلز موجب می شود که مذاب در راهگاهها پس زده نشود و در هنگام استفاده از چند راهگاه فرعی با سطوح مقاطع یکسان مقدار جریان مذاب در تمام آن ها برابر است ولی در سیستم غیر فشاری تمایل خروج مذاب از دورترین راهگاه فرعی نسبت به راهگاه بارریز بیشتر می باشد .

در هر حال از آنجائی که سرعت جریان مذاب در سیستم های فشاری زیادتر است لذا بروز بعضی معایب در قطعات ریختگی متحمل خواهد بود برای مثال در گوشه هایی که دارای قوس تندی هستند حرکت مذاب اغتشاشی بوده و بنابراین جذب گاز در مذاب و درنتیجه ظهور اکسید ها و ناخالصی ها و شسته شدن دیواره های قالب می توانند رخ دهند .

سیستم غیر فشاری ( Non – pressurized gating system )

در این سیستم مجموع سطوح مقاطع راهگاه های فرعی از سطح مقطع راهگاه بارریز بیشتر بوده و در نتیجه فشار مذاب در راهگاه بارریز گرفته شده و مذاب به آرامی وارد محفظه قالب می گردد که در این سیستم از آن جایی که مذاب در این سیستم به آرامی وارد محفظه قالب می شود لذا جهش فلز به داخل محفظه قالب و حرکت اغتشاشی در آن وجود ندارد و با توجه به این واقعیت که در پشت مذاب فشار چندانی وجود ندارد لذا باید سعی کرد تا سیستم راهگاهی همواره از مذاب پر نگهداشته شود و امکان واردکردن یکنواخت مذاب به محفظه قالب از طریق راهگاههای فرعی مشکل است .

حوضچه بارریزی ( Pouring cup or basin )

گشاد کردن قسمت بالای راهگاه بارریز یا ایجاد حوضچه عمل ریختن مذاب را تسهیل می کند . عدم استفاده از حوضچه امکان ورود شلاکه به داخل راهگاه بارریز را زیاد می کند و هرچقدر حوضچه بزرگتر در نظر گرفته شود این امکان تقلیل می یابد . آن قسمتی از حوضچه که در امتداد لوچه پاتیل قرار دارد باید به اندازه کافی طویل در نظر گرفته شود . حوضچه هایی که کف آن ها پایین تر از سطح بالایی راهگاه بارریز قرار دارد وظیفه گرفتن فشار مذاب ورودی را نیز بر عهده داشته و موجب می شوند تا مذاب به آرامی وارد راهگاه بارریز گردد بدترین شکل برای حوضچه حالت قیفی و بهترین شکل برای آن نوع نشان داده شده در شکل می باشد .

در ریختن قطعات بزرگ استفاده از تله در حوضچه ها برای جلوگیری از ورود شلاکه به راهگاه متداول است از آنجائی که این روش جریان مذاب به داخل راهگاه بارریز را به صورت اغتشاشی در می آورد لذا غیرمفید تشخیص داده شده است .

قرار دادن مانعی روی قسمت بالای راهگاه بارریز به منظور پر کردن اولیه حوضچه از مذاب هم به دلیل مشابه مضر است . قطر یا عرض حوضچه باید حداقل دو برابر قطر جریان مذابی که از پاتیل به داخل آن ریخته می شود در نظر گرفته شود . عمق حوضچه نیز باید به صورتی باشد که در هنگام ریختن مذاب به داخل آن هیچگونه پاشیدگی مذاب صورت نگیرد . در شکل زیر ابعاد یک نوع حوضچه مناسب که بیشتر در ریخته گری انواع چدن با گرافیت کروی مورد مصرف دارد نشان داده شده است .

راهگاه بارریز ( Sprue )

استفاده از چند راهگاه بارریز در یک قالب به هیچ وجه توصیه نمی شود مگر آنکه قطعه ریختگی بسیار بزرگ بوده و ریختن آن نیاز به استفاده از چند پاتیل داشته باشد .

ارتفاع راهگاه بارریز بیشتر با توجه به ارتفاع درجه های موجود در کارگاه تعیین می شود . سطح مقطع این راهگاه در سیستم فشاری تقریبا 3 برابر مجموع سطوح مقاطع راهگاههای فرعی در نظر گرفته می شود و در سیستم غیر فشاری مجموع سطوح مقاطع راهگاههای فرعی تقریبا باید با سطح مقطع قسمت تحتانی راهگاه بارریز یکسان در نظر گرفته شود .

راهگاه بارریز معمولا بصورت استوانه ای در نظر گرفته می شود که سطح مخصوص آن اندکی کمتر از سطح مخصوص راهگاه با مقطع گوشه دار می باشد و جز این امتیاز دیگری ندارد .

بدلیل مشکلات عملی در تهیه قالب های ماشینی با سرعت بالا در سیستم های فشاری از راهگاه بارریز بدون شیب و یا با شیب جزئی استفاده می شود و در سیستم غیر فشاری همواره لازم است از راهگاه بارریزی استفاده شود که قسمت تحتانی آن کمترین سطح مقطع ممکن را در مقایسه با قسمت های دیگر آن داشته باشد در صورتی که در این سیستم از راهگاه بارریز بدون شیب استفاده شود باید در محل اتصال راهگاه بارریز و راهگاه اصلی از تنگه استفاده کرد .

راهگاه اصلی ( Runner )

بهترین طرح برای راهگاه اصلی ساده ترین آن هاست به همین دلیل چنانچه فضای درجه قالب گیری اجازه دهد بهترین نوع راهگاه اصلی نوع مستقیم است . ایجاد هرگونه قوسی در این راهگاه به ایجاد حرکت اغتشاشی مذاب کمک می کند چنانچه به کار بردن این قوس در راهگاه اصلی اجتناب ناپذیر باشد بایستی این قوس را با حداکثر زاویه ممکن ایجاد کرد در راهگاه اصلی انحنادار نباید راهگاه فرعی را نزدیک قسمت قوس راهگاه اصلی تعبیه کرد . چنانچه از یک راهگاه اصلی گرد استفاده شود باید از به کار بردن راهگاه فرعی در وسط قوس پرهیز کرد . اصولا در حالتی که برای قطعه ای استوانه ای شکل از راهگاه اصلی گرد استفاده شود توصیه می گردد که سیستم راهگاهی غیرفشاری بکار برده شود .

اتصال راهگاه بارریز به راهگاه اصلی

اولین قاعده برای طراحی اتصال فوق آن است که سطح مقطع در قسمت اتصال نبایستی از سطح مقطع قسمت تحتانی راهگاه بارریز کمتر باشد . قسمت انتهائی راهگاه بارریز باید با قسمت تحتانی راهگاه اصلی در یک امتداد قرار گیرند .  

در انتهای راهگاه بارریز چاهکی به نام پای راهگاه تعبیه می شود که مذاب پس از پر کردن به راهگاه اصلی وارد می گردد . سطح مقطع افقی پای راهگاه می تواند حدودا دو برابر سطح مقطع افقی قسمت انتهایی راهگاه بارریز در نظر گرفته شود و عمق آن می تواند تقریبا برابر ارتفاع راهگاه اصلی باشد .

راهگاههای فرعی

راهگاههای فرعی به ویژه در سیستم های فشاری مهمترین جزء سیستم راهگاهی به شمار می روند . تعبیه ضخامت محاسبه شده راهگاه فرعی در مرحله قالب گیری به دقت زیادی نیاز دارد این مشکل در مواردی می تواند باعث افزایش ضایعات قطعات ریختگی شود حداقل ضخامت مجاز راهگاه فرعی به درجه حرارت ریختن مذاب بستگی دارد .

هنگامی که گوشه های راهگاه فرعی جامد شد همزمان با آن نصف ضخامت این راهگاه جامد می شود . محاسبه نشان می دهد که چنانچه راهگاه فرعی در قالب با یک شیب 45 درجه تعبیه گردد گوشه های آن حتی سریعتر جامد می شود .

در یک سیستم راهگاهی تعداد راهگاههای فرعی به طرح قطعه بستگی دارد . در سیستم فشاری عرض راهگاههای فرعی را نباید بیش از حد بزرگ در نظر گرفت زیرا در مرحله اولیه ریختن مذاب در قالب و قبل از آن که راهگاه اصلی از مذاب پر شود امکان ورود فلز و احتمالا شلاکه به داخل راهگاههای فرعی وجود خواهد داشت .

اصول طراحی سیستم فشاری

در ریخته گری چدنها و در بیشتر موارد استفاده از سیستم فشاری بر سیستم غیر فشاری ترجیح داده می شود . یکی از انتقادات به این نوع سیستم راهگاهی وارد شدن سریع مذاب از راهگاههای فرعی به محفظه قالب است که خود می تواند باعث شسته شدن ماسه قالب شود . سرعت جریان مذاب در راهگاه فرعی بسته به ارتفاع مذاب در راهگاه بارریز است .

یکی از مهمترین پارامترها در طراحی سیستم راهگاهی انتخاب زمان مناسب برای پرکردن محفظه قالب می باشد . اندازه مناسب برای تنگه تابعی از مدت زمان ریختن مذاب می باشد برای آنکه مذاب به سهولت و بدون تأخیر محفظه قالب را پر کند ایجاد منافذ هوا به منظور جلوگیری از ازدیاد فشار در محفظه قالب در اثر تراکم هوا و گاز های موجود در محفظه قالب ضروری می باشد.

درجه حرارت ریختن مذاب و ظرفیت پاتیل ها

انتخاب درجه حرارت ریختن مذاب بستگی به نوع سیستم راهگاهی و تغذیه گذاری قطعات دارد . برای ریخته گری قطعات چدنی با جداره های ضخیم با استقاده از تغذیه ریختن مذاب در درجه حرارتی بالایی انجام می شود .

انتخاب اندازه پاتیل بایستی به گونه ای انجام گیرد که افت درجه حرارت مذاب در آن حداقل مقدار ممکن بوده و خالی و پر کردن آن نیز با مشکلی مواجه نباشد و شکل لوچه پاتیل بسیار مهم بوده و به شکل U کشیده ترجیح داده می شود ضمن آن که سطح مقطع کانال بارریزی آن دو برابر سطح مقطع راهگاه بارریز در نظر گرفته می شود .

اصول طراحی سیستم غیر فشاری

نسبت بین سطوح مقاطع قسمت فوقانی راهگاه بارریز و تنگه باید در همان حدی در نظر گرفته شود که در سیستم راهگاهی فشاری معمول است در این سیستم وردو شلاکه به محفظه قالب می تواند در سه مرحله زمانی مختلف انجام گیرد : مرحله اول شبیه حالت فشاری است با این تفاوت که این زمان کوتاه تر بوده و احتمالا شلاکه نمی تواند به راهگاههای فرعی راه یابد و مرحله دوم با سیستم فشاری شباهت دارد و همین طور مرحله سوم .

در این جا ترجیح داده می شود که راهگاه اصلی به صورت مستقیم باشد و در این سیستم مجموع سطوح مقاطع راهگاههای فرعی باید بیشتر از سطح مقطع تنگه در نظر گرفته شود .

کوچکترین سطح مقطع در سیستم غیر فشاری در محل اتصال راهگاه بارریز به راهگاه اصلی واقع است . مجموع سطوح مقاطع راهگاههای فرعی معمولا دو تا چهار برابر سطح مقطع تنگه در نظر گرفته می شود . سرعت خطی جریان مذاب در راهگاه فرعی یک سیستم غیر فشاری کمتر از مقدار مشابه در سیستم فشاری است .

سیستم راهگاهی با سطح جدایش عمودی

تهیه قالب های ماسه ای با سطح جدایش عمودی به طور گسترده ای در ریخته گری رواج پیدا کرد . روش قالب گیری پوسته ای و روش های قالب گیری ماشینی بدون درجه با سرعت قالب گیری بالا که به سریع ریختن مذاب در قالب منتهی می شود از اهمیت زیادی برخوردار است . تکنولوژی راهگاهی در این روش قالب گیری هنوز در مراحل تکاملی خود قرار دارد در شکل زیر چند نوع متداول از سیستم راهگاهی با سطح جدایش عمودی نشان داده شده است .

روش راهگاه گذاری در ریخته گری چدن با گرافیت کروی برای اضافه کردن منیزیم به مذاب در راهگاه

در این روش آلیاز محتوی منیزیم را در محفظه ای درون سیستم راهگاهی قرار داده و مذاب عاری از منیزیم را درون قالب می ریزند . امروزه این روش در تهیه چدن با گرافیت کروی در سطح گستردهای در صنایع ریخته گری رواج یافته و دارای جاذبه های خاصی می باشد .

غالبا استفاده از سیستم راهگاهی با کنترل جریان مذاب در راهگاه فرعی اصلی توصیه می شود . یکی از مسائل مهم در اضافه کردن منیزیم به مذاب در سیستم راهگاهی امکان ورود شلاکه های منیزیمی به محفظه قالب می باشد به همین دلیل سیستم راهگاهی بایستی به گونه ای طرح گردد که شلاکه در راهگاهها باقی مانده و امکان ورود به محفظه قالب را نیابد .

معایب مربوط به سیستم راهگاهی و روشهای رفع آن ها

یکی از معایب سطحی بسیار آشنا در چدن های خاکستری و انواع چدن با گرافیت کروی حفره های گازی در سطوح فوقانی قطعات ریختگی می باشند در شکل زیر نمونه ای از آن آمده است .

ورود شلاکه به محفظه قالب و بجای ماندن آن در قطعه ریختگی از دیگر معایب معمول در قطعات چدنی است . اکسیدها منبع اصلی شلاکه را تشکیل می دهند ورود شلاکه به محفظه قالب همواره امکان پذیر است مگر آنکه سیستم راهگاهی به درستی طراحی گردد . برخی اکسید ها توسط کربن موجود در آهن مذاب احیاء می شوند . زمان باقی ماندن حبابهای گاز در سطح مشترک قالب و مذاب بستگی به اندازه حبابها و نوع چدن دارد .

انرژی لازم برای نفوذ حباب گازی از سطح مشترک فوق به جداره قالب به مقدار زیادی بستگی به انرژی سطح مشترک مذاب و قالب دارد از این لحاظ چدن با گرافیت کروی بدتر از چدن خاکستری بوده و احتمال بروز معایب گازی سطحی در آن تقریبا 50 درصد بیش از چدن خاکستری می باشد . سه مثال از عیوب فوق در شکل زیر نشان داده شده است .

برای جلوگیری از عیوب فوق طراحی سیستم راهگاهی ضرورت دارد و چنین جریان مذاب در راهگاهها و محفظه قالب باید به آرامی صورت گیرد . ورود شلاکه به محفظه قالب علل گوناگونی دارد نگرفتن شلاکه به طرز صحیح در پاتیل موجب ورود آن به محفظه قالب و حضور آن در قطعه ریختگی می گردد .

نوع چدن و سیستم راهگاهی

از نظر اصولی تفاوتی بین طراحی سیستم راهگاهی برای چدن های خاکستری و انواع چدن با گرافیت کروی وجود ندارد به هر حال به عنوان یک راهنمای کلی می توان چنین اظهار داشت که راهگاه گذاری چدن خاکستری از انواع چدن با گرافیت کروی ساده تر است .

یک اختلاف اساسی در راهگاه گذاری این دو نوع چدن آن است که چدن های خاکستری به راهگاه اصلی با حجم کمتری نیاز دارند و هم چنین گرفتن شلاکه و ناخالصی ها در ریخته گری چدن ها ی خاکستری ساده تر از انواع چدن با گرافیت کروی انجام می شود . مذاب چدن با گرافیت کروی دارای شلاکه بیشتری از مذاب چدن خاکستری است علاوه بر این ها مقدار سیلیسیوم در چدن خاکستری کمتر از چدن با گرافیت کروی است .


دسته بندی :

طبفه‌بندی چدن‌ها

چدن های عمومی که موارد استعمال آنها در کاربردهای عمده مهندسی است و آلیاژهای با منظور و مقاصد ویژه از جمله چدنهای سفید و آلیاژی که برای مقاومت در برابر سایش ، خوردگی و مقاوم در برابر حرارت بالا مورد استفاده قرار می‌گیرند.

چدن های معمولی (عمومی)

این چدن ها چزو بزرگترین گروه آلیاژهای ریختگی بوده و براساس شکل گرافیت به انواع زیر تقسیم می‌شوند:

•چدن های خاکستری ورقه ای یا لایه ای: چدن های خاکستری جزو مهمترین چدن های مهندسی هستند که کاربردی زیاد دارند نام این چدن ها از خصوصیات رنگ خاکستری سطح مقطع شکست آن و شکل گرافیت مشتق می‌شود.خواص چدن های خاکستری به اندازه ، مقدار و نحوه توزیع گرافیت‌ها و ساختار زمینه بستگی دارد. خود این‌ها نیز به کربن و سیلیسیم (C.E.V=%C+%⅓Si+%⅓P) و همچنین روی مقادیر جزئی عناصر ، افزودنی‌های آلیاژی ، متغیرهای فرایندی مانند، روش ذوب ، عمل جوانه زنی و سرعت خنک شدن بستگی پیدا می‌کنند. اما به طور کلی این چدن ها ضریب هدایت گرمایی بالایی داشته، مدول الاستیستیه و قابلیت تحمل شوکهای حرارتی کمی دارند و قطعات تولیدی از این چدن ها به سهولت ماشینکاری و سطح تمام شده ماشینکاری آنها نیز مقاوم در برابر سایش از نوع لغزشی است. این خواص آنها را برای ریختگی هایی که در معرض تنش‌های حرارتی محلی با تکرار تنشها هستند، مناسب می‌سازد. افزایش میزان فریت در ساختار باعث استحکام مکانیکی خواهد شد. این نوع حساس بودن به مقاطع نازک و کلفت در قطعات چدنی بدنه موتورها مشاهده می شود دیواره نازک و لاغر سیلندر دارای زمینه‌ای فریتی و قسمت ضخیم نشیمنگاه یا تاقان‌ها زمینه‌ای با پرلیت زیاد را پیدا می‌کند. همچنین در ساخت ماشین آلات عمومی ، کمپرسورهای سبک و سنگین ، قالب‌ها ، میل لنگ‌ها ، شیر فلکه‌هاو اتصالات لوله‌ها و غیره از چدنهای خاکستری استفاده می‌شود.

•چدن های مالیبل یا چکش خوار: چدن های چکش خوار با دیگر چدن ها به واسطه ریخته گری آنها نخست به صورت چدن سفید فرق می‌کنند. ساختار آنها مرکب از کاربیدهای شبه پایدار در یک زمینه‌ای پرلیتی است بازپخت در دمای بالا که توسط عملیات حرارتی مناسب دنبال می‌شود باعث تولید ساختاری نهایی از توده متراکم خوشه‌های گرافیت در زمینه فریتی یا پرلیتی بسته به ترکیب شیمیایی و عملیات حرارتی می‌شود. ترکیب به کار برده شده براساس نیازهای اقتصادی ، نحوه باز پخت خوب و امکان جذب و امکان تولید ریخته‌گری انتخاب می‌شود. مثلا بالا رفتن Si بازپخت را جلو انداخته و موجب عملیات حرارتی خوب و سریعی با سیلکی کوتاه می‌شود و در ضمن مقاومت مکانیکی را نیز اصلاح می‌نماید. تاثیر عناصر به مقدار بسیار کم در این چدن ها دست آورد دیگری در این زمینه هستند. Te و Bi تشکیل چدن سفید در حالت انجماد را ترقی داده، B و Al موجب اصلاح قابلیت بازپخت و توام با افزایش تعداد خوشه‌های گرافیت می‌شود میزان Mn موجود و نسبت Mn/S برای آسان کردن عمل بازپخت می‌بایستی کنترل گردد. عناصری از جمله Cu و Ni و Mo را ممکن است برای بدست آوردن مقاومت بالاتر یا افزایش مقاومت به سایش و خوردگی به چدن افزود. دلیل اساسی برای انتخاب چدن های چکش خوار قیمت تمام شده پایین و ماشینکاری راحت و ساده آنهاست. کاربردهای آنها در قطعات اتومبیل قطعات کشاورزی ، اتصالات لوله ها ، اتصالات الکتریکی و قطعات مورد استفاده در صنایع معدنی است.

•چدن های گرافیت کروی یا نشکن: این چدن در سال 1948 در فیلادلفیای آمریکا در کنگره جامعه ریخته گران معرفی شد. توسعه سریع آن در طی دهه 1950 آغاز و مصرف آن در طی سال های 1960 روبه افزایش نهاده و تولید آن با وجود افت در تولید چدن ها پایین نیامده است. شاخصی از ترکیب شیمیایی این چدن به صورت کربن 3.7% ، سیلیسیم 2.5% ، منگنز0.3% ، گوگرد 0.01% ، فسفر 0.01% و منیزیم 0.04% است. وجود منیزیم این چدن را از چدن خاکستری متمایز می‌سازد. برای تولید چدن گرافیت کروی از منیزیم و سریم استفاده می‌شود که از نظر اقتصادی منیزیم مناسب و قابل قبول است. جهت اصلاح و بازیابی بهتر منیزیم برخی از اضافه شونده‌هایی از عناصر دیگر با آن آلیاژ می‌شوند و این باعث کاهش مصرف منیزیم و تعدیل کننده آن است. منیزیم ، اکسیژن و گوگرد زدا است. نتیجتا منیزیم وقتی خواهد توانست شکل گرافیتها را به سمت کروی شدن هدایت کند که میزان اکسیژن و گوگرد کم باشند. اکسیژن‌زداهایی مثل کربن و سیلیسیم موجود در چدن مایع این اطمینان را می‌دهند که باعث کاهش اکسیژن شوند ولی فرآیند گوگردزدایی اغلب برای پایین آوردن مقدار گوگرد لازم است. از کاربردهای این چدن ها در خودروسازی و صنایع وابسته به آن مثلا در تولید مفصل‌های فرمان و دیسک ترمزها ، در قطعات تحت فشار در درجه حرارت های بالا مثل شیر فلکه‌ها و اتصالات برای طرحهای بخار و شیمیایی غلتکهای خشک‌کن نورد کاغذ ، در تجهیزات الکتریکی کشتی‌ها ، بدنه موتور ، پمپ‌ها و غیره است.

•چدن های گرافیت فشرده یا کرمی شکل: این چدن شبیه خاکستری است با این تفاوت که شکل گرافیت‌ها به صورت کروی کاذب ، گرافیت تکه‌ای با درجه بالا و از نظر جنس در ردیف نیمه نشکن قرار دارد. می‌توان گفت یک نوع چدنی با گرافیت کروی است که کره‌های گرافیت کامل نشده‌اند یا یک نوع چدن گرافیت لایه‌ای است که نوک گرافیت گرد شده و به صورت کرمی شکل درآمده‌اند. ایت چدن ها اخیرا از نظر تجارتی جای خود را در محدوده خواص مکانیکی بین چدن های نشکن و خاکستری باز کرده است.
ترکیب آلیاژ موجود تجارتی که برای تولید چدن گرافیت فشرده استفاده می‌شود عبارت است از: Mg%4-5 ،Ti%8.5-10.5 ، Ca% 4-5.5 ، Al%1-1.5 ، Ce %0.2-0.5 ،Si%48-52 و بقیه Fe. چدن گرافیت فشرده در مقایسه با چدن خاکستری از مقاومت به کشش ، صلبیت و انعطاف‌پذیری ، عمر خستگی ، مقاومت به ضربه و خواص مقاومت در دمای بالا و برتری بازمینه‌ای یکسان برخوردار است و از نظر قابلیت ماشینکاری ، هدایت حرارتی نسبت به چدن های کروی بهتر هستند. از نظر مقاومت به شکاف و ترک خوردگی برتر از سایر چدن ها است. در هر حال ترکیبی از خواص مکانیکی و فیزیکی مناسب ، این چدن ها را به عنوان انتخاب ایده آلی جهت موارد استعمال گوناگون مطرح می‌سازد. مقاومت بالا در مقابل ترک‌خوردگی آنها را برای قالبهای شمش‌ریزی مناسب می‌سازد. نشان دادن خصوصیاتی مطلوب در دماهای بالا در این چدن ها باعث کاربرد آنها برای قطعاتی از جمله سر سیلندرها ، منیفلدهای دود ، دیسکهای ترمز ، دیسکها و رینگهای پیستون شده است.

چدن های سفید و آلیاژی مخصوص
کربن چدن سفید به صورت بلور سمانتیت (کربید آهن ، Fe3C) می‌باشد که از سرد کردن سریع مذاب حاصل می‌شود و این چدن ها به آلیاژهای عاری از گرافیت و گرافیت‌دار تقسیم می‌شوند و به صورتهای مقاوم به خوردگی ، دمای بالا، سایش و فرسایش می‌باشند.

•چدن های بدون گرافیت: شامل سه نوع زیر می باشد:
oچدن سفید پرلیتی: ساختار این چدنها از کاربیدهای یکنواخت برجسته و توپر M3C در یک زمینه پرلیتی تشکیل شده است. این چدنها مقاوم در برابر سایش هستند و هنوز هم کاربرد داشته ولی بی‌نهایت شکننده هستند لذا توسط آلیاژهای پرطاقت دیگری از چدن های سفید آلیاژی جایگزین گشته‌اند.

oچدن سفید مارتنزیتی (نیکل- سخت): نخستین چدن های آلیاژی که توسعه یافتند آلیاژهای نیکل- سخت بودند. این آلیاژها به طور نسبی قیمت تمام شده کمتری داشته و ذوب آنها در کوره کوپل تهیه شده و چدن های سفید مارتنزیتی دارای نیکل هستند. Ni به عنوان افزایش قابلیت سختی پذیری برای اطمینان از استحاله آستنیتی به مارتنزیتی در طی مرحله عملیات حرارتی به آن افزوده می‌شود. این جدن ها حاوی Cr نیز به دلیل افزایش سختی کاربید یوتکتیک هستند. این چدنها دارای یک ساختار یوتکتیکی تقریبا نیمه منظمی با کاربیدهای یکنواخت برجسته و یکپاره M3C هستند که بیشترین فاز را در یوتکتیک دارند و این چدنها مقاوم در برابر سایش هستند.
چدن سفید پرکرم: چدن های سفید با Cr زیاد ترکیبی از خصوصیات مقاومت در برابر خوردگی ، حرارت و سایش را دارا هستند این چدنها مقاومت عالی به رشد و اکسیداسیون در دمای بالا داشته و از نظر قیمت نیز از فولادهای ضد زنگ ارزان تر بوده و درجاهایی که در معرض ضربه و یا بازهای اعمالی زیادی نیستند به کار برده می‌شوند این چدنها در سه طبقه زیر قرار می‌گیرند:

1.چدنهای مارتنزیتی با Cr %12-28
2.چدنهای فریتی با 34-30% Cr
3.چدنهای آستنیتی با 30-15%Cr و 15-10% Niبرای پایداری زمینه آستنیتی در دمای پایین.

طبقه بندی این چدنها براساس دمای کار ، عمر کارکرد در تنش های اعمالی و عوامل اقتصادی است. کاربرد این چدنها در لوله‌های رکوپراتو ، میله ، سینی ، جعبه در کوره‌های زینتر و قطعات مختلف کوره‌ها، قالب‌های ساخت بطری شیشه و کاسه نمدهای فلکه‌ها است.

•چدن های گرافیت دار:
oچدن های آستنیتی: شامل دو نوع (نیکل- مقاوم) و نیکروسیلال Ni-Si ، که هر دو نوع ترکیبی از خصوصیات مقاومت در برابر حرارت و خوردگی را دارا هستند. اگرچه چدن های غیر آلیاژی به طور کلی مقاوم به خوردگی بویژه در محیط های قلیایی هستند، این چدنها به صورت برجسته‌ای مقاوم به خوردگی در محیط هایی مناسب و مختص خودشان هستند. چدن های نیکل مقاوم آستنیتی با گرافیت لایه‌ای که اخیرا عرضه شده‌اند از خواص مکانیکی برتری برخوردار بوده ولی خیلی گران هستند. غلظت نیکل و کرم در آنها بسته به طبیعت محیط خورنده شان تغییر می‌کند. مهمترین کاربردها شامل پمپهای دنده‌ای حمل اسید سولفوریک، پمپ خلا و شیرهایی که در آب دریا مصرف می‌شوند، قطعات مورد استفاده در سیستم‌های بخار و جابه‌جایی محلول‌های آمونیاکی، سود و نیز برای پمپاژ و جابجایی نفت خام اسیدی در صنایع نفت هستند.

oچدن های فریتی: شامل دو نوع زیر می‌باشد: چدن سفید 5% سیلیسیم در سیلال که مقاوم در برابر حرارت می‌باشد و نوع دیگر چدن پرسیلیسیم (15%) که از مقاومتی عالی به خوردگی در محیطهای اسیدی مثل اسید نیتریک و سولفوریک در تمام دماها و همه غلظتها برخوردارند. اما برخلاف چدن های نیکل- مقاوم ، عیب آن ، ترد بودن است که تنها با سنگ‌زنی می‌توان ماشینکاری نمود. مقاومت به خوردگی آنها در برابر اسیدهای هیدروکلریک و هیدروفلوریک ضعیف است. جهت مقاوم سازی به خوردگی در اسید هیدروکلریک می‌توان با افزودن Si تا 18-16% ، افزودن Cr%5-3 یا Mo %4-3 به آلیاژ پایه ، اقدام نمود.

oچدن های سوزنی: در این چدنها Al به طور متناسبی جانشین Si در غلظت های کم می‌گردد. چدن های آلیاژهای Alدار تجارتی در دو طبقه بندی یکی آلیاژهای تا Al %6 و دیگری Al%18-25 قرار می‌گیرند. Al پتانسیل گرافیته‌شدگی را در هر دوی محدوده‌های ترکیبی ذکر شده حفظ کرده و لذا پس از انجماد چدن خاکستری بدست می‌آید. این آلیاژ به صورت چدنهای گرافیت لایه‌ای ، فشرده و کروی تولید می‌شوند. مزایای ملاحظه شده شامل استحکام به کشش بالا ، شوک حرارتی و تمایل به گرافیته شدن و سفیدی کم می‌باشند که قادر می‌سازند قطعات ریختگی با مقاطع نازک‌تر را تولید کرد. چدن های با Al کم مقاومت خوبی به پوسته پوسته شدن نشان داده و قابلیت ماشینکاری مناسبی را نیز دارا هستند. محل های پیشنهادی جهت کاربرد آنها منیفلدهای دود ، بدنه توربوشارژرها ، روتورهای دیسک ترمز، کاسه ترمزها ، برش سیلندرها، میل بادامکها و رینگهای پیستون هستند. وجود Al در کنار Si در این نوع چدنها باعث ارائه خواص مکانیکی خوب توام با مقاومت به پوسته‌شدگی در دماهای بالا می‌شود. این آلیاژها مستعد به تخلخل‌های گازی هستند. آلومینیوم حل شده در مذاب می توان با رطوبت یا هیدروکربنهای موجود در قالب ترکیب شده و هیدروژن آزاد تولید کند. این هیدروژن آزاد قابل حل در فلز مذاب بوده و باعث به وجود آوردن مک‌های سوزنی شکل در انجماد می‌شود
.


دسته بندی :

فولاد هاي مقاوم حرارتي


امروزه فولادها در شرايط متغير و گسترده اي ؛ شامل محيط هايي با دماي بالا و خورنده تحت شرايط تنش استاتيكي و ديناميكي بكار مي روند. از قبيل دريچه هاي موتور هواپيما ، حامل هاي كوره ، رتورت ها ، واحدهاي كراكينگ نفت و توربين هاي گازي . سه مشخصه براي فلزاتي كه در دماي بالا به كار مي روند ؛ مورد نياز است :


1-  مقاومت به اكسيداسيون و پوسته شدن


2- حفظ استحكام در دماي كاري


3- پايداري ساختار ؛ با توجه به رسوب كاربيدها ، كروي شدن ، كاربيدهاي سيگما، تردي بازپخت


ديگر ويژگي ها نيز ممكن است در كاربرد مهم باشند ؛ همچون مقاومت ويژه و ضريب حرارتي براي اهداف الكتريكي ، ضريب انبساط براي واحدهاي ساختماني و مقاومت به نفوذ در اثر پديده سوختن در بعضي كاربردهاي كوره اي . در مورد فولادهاي توربين هاي گازي مشخصات ديگري نيز مطرح مي شود ، ظرفيت ميرايي داخلي و استحكام خستگي ، حساسيت به فاق و استحكام ضربه اي ( سرد و گرم ) ، مشخصه جوشكاري و ماشينكاري ، بويژه در رتورهاي بزرگ كه بايد با حداقل مقاطع جوشكاري شده ساخته شوند .


پوسته اكسيدي كه بر روي آهن شكل مي گيرد متخلخل بوده و چسبنده نيست،  اما اين پوسته در اثر اضافه كردن عناصر ويژه اي به فولاد ، چسبنده و محافظ مي شود . اين عناصر كرم ، سيليسيم و آلومينيوم هستند و آنها بوسيله ميل تركيبي زياد با اكسيژن توصيف مي شوند ؛ اما واكنش بوسطه شكل گيري فيلم اكسيدي خنثي به سرعت متوقف مي شود. مقاومت به اكسيداسيون فولاد نرم بوسيله شكل گيري آلياژ آهن - آلومينيوم در سطح ، به مقدار زيادي بهبود مي يابد. اين عمل به وسيله حرارت دادن در 0C 1000 و تماس با پودر آلومينيوم (calorising ) يا اسپري  حرارتي انجام مي شود.


بهبود مقاومت خزشي نيز بوسيله روش هاي زير بدست مي آيد :


- بالا بردن دماي نرم شدن بوسيله انحلال عناصر آلياژي


- استفاده معقول از رسوب سختي در دماي كاري ، بدون پديده فراپيري .  سختي فاز ثانويه شديدا وابسته به درجه و يكنواختي ، پراكندگي بدست آمده است و ضريب خزش وابسته به دامنه فاصله اجزا است .


- كنترل درجه كارسختي در بازه دمايي مناسب كه اغلب اندازه خزشي اوليه را كاهش مي دهد.


- تغييرات در پروسه توليد ، اكسيژن زدايي و ذرات درون مرزهاي كريستالي نيز مي توانند روي خواص خزشي تاثير گذار باشند.


- ذوب در خلا مزايايي دارد كه در روش هاي معمول نمي توان به آنها دست يافت .


خواص مكانيكي نيز بوسيله  اضافه كردن عناصر گوناگون بهبود بخشيده مي شود ؛ كبالت ، تنگستن و موليبدن باعث استقامت فولاد در برابر عمل تمپر كردن مي شود. فولادهاي آستنيتي آلياژي هيچ تغييري ندارندو بنابراين بوسيله سرد كردن در هوا سخت نمي شوند . اما مقاومت به سايش آنها خوب نيست . مقدار كافي از عناصر آلياژي همچون سيلسيم و كرم خط Ac را بالا مي برد. فولاد با درصد بالاي نيكل نبايد در دماي بالا در تماس با دي اكسيد گوگرد و يا ديگر تركيبات گوگردي قرار گيرد ؛ چون فيلم هاي كريستالي سولفيد نيكل شكل مي گيرد.


در فولادهايي با كرم بالا كاربيدها به هم پيوسته و بزرگ مي شوند، كه اين منجر به كم كردن مسدود شدن رشد دانه هاي فريت در دماي بالاي 0C 700 مي شود. رشد بيش از اندازه دانه ها باعث كم شدن تافنس مي شود.  همچنين رشد دانه در بالاي 0C 1000 در فولاد هاي آستنيتي اتفاق مي افتد، اما هيچ مشكلي بوجود نمي آيد . چون آنها حتي در شرايط دانه هاي درشت چقرمه و داكتيل باقي مي مانند. هنگام گرم كردن در بازه  0C 500- 900 فولادهاي آستنيته  ، كاربيدها در طول مرزهاي آستنيت رسوب نمي كنند و بعلت اينكه ترك هاي درون بلوري احتمالا افزايش مي يابند اگر فولاد تحت تنش پيوسته در شرايط كششي در اين رنج دمايي قرار گيرد. فولادهاي فرتيك و آستنيتيك در تركيب ويژهاي بوسيله شكل گيري فاز سيگما ترد مي شوند.

 

 


دسته بندی :

معرفي مهندسي مواد و تمام گرايشهاي آن

موضوع
مهندسي مواد يكي از رشته هاي مهندسي است كه به درستي لقب مادر رشته هاي مهندسي را به خود اختصاص داده است. اين رشته به عنوان يك رشته مستقل، قدمتي حدود هفتاد ساله دارد. در ايران نيز از حدود 40 سال قبل اين رشته در دانشگاه‌هاي كشور تدريس مي‌شود. به جرات مي‌توان گفت كه اكثريت قريب به اتفاق مصنوعات بشري كه در اطراف مي‌بينيم. حاصل تلاش مهندسين مواد است. اگر به اتومبيل، قطار و هواپيما توجه كنيم، قسمت‌هاي اصلي آن مثل بدنه، شيشه و موتور از مواد تشكيل شده است. در ساختمان‌ها تمام قطعات فلزي بكار رفته در اسكلت ساختمان، تمام مواد اوليه سيم كشي، مواد بكار رفته در لوله كشي‌هاي آب، شوفاژ، گاز، وسايل و لوازم خانگي و... تماماً به مهندس مواد مربوط مي‌شود. در حال حاضر رشته مهندسي مواد در سطح دانشگاه‌هاي ايران در مقطع كارشناسي در سه گرايش دانشجو مي‌پذيرد كه عبارتند از: متالورژي استخراجي، متالورژي صنعتي و سراميك.

گرايش متالورژي استخراجي
گرايش متالورژي استخراجي يكي از زيرمجموعه هاي رشته مهندسي مواد است. كشور ايران جزء معدود كشورهاي جهان بشمار مي رود كه داراي معادن متنوع و غني از فلزات است. با وجود اين مزيت نسبي، متأسفانه هنوز ما نتوانسته ايم به جايگاه واقعي خود در توليد فلزات در جهان برسيم. در ايران در حال حاضر فقط فلزاتي نظير آهن، مس، سرب، روي و آلومينيوم بصورت انبوه توليد مي شود. هنوز ما وارد كننده فلزاتي نظير تيتانيم، منيزيم، كبالت و ... هستيم. حتي بايد اشاره كرد كه بحث روز ايران در رابطه با غني سازي اورانيم، با وجود معادن حاوي اورانيم اخيراً مورد توجه قرار گرفته، كه يك بحث كاملاً متالورژيكي است. در حقيقت بايد از متخصصين امر استخراج فلزات بعنوان متوليان توليد فلز اورانيم نام برد. بنابراين دير يا زود ايران بايد توليد ديگر فلزات مهم صنعتي و استراتژيك را آغاز كند. اين مسئله جز با كمك نيروهاي متخصص امكان پذير نيست.
در اين رشته به هيچ وجه در مورد معدن كاري و استخراج معادن بحث نمي شود. اين جزء مواردي است كه به فارغ التحصيلان رشته مهندسي معدن مربوط مي شود. بلكه كار فارغ التحصيلان اين رشته هنگامي آغاز شده كه سنگ معدن حاوي فلز در محل كارخانه تحويل گرفته مي شود.
در اين گرايش دانشجويان، اصول و مباني علمي استخراج فلزات را آموزش مي بينند. در كنار آموزش فناوريهاي متداول توليد فلزات، روشهاي نوين توليد فلزات نيز تدريس مي شود.
از ديگر زمينه هايي كه در اين گرايش آموزش داده مي شود ميتوان به خوردگي و از بين رفتن فلزات و روشهاي جلوگيري از آن و روشهاي پوشش دهي فلزات اشاره كرد. گفتني است كه در حال حاضر 33% از درآمد ناخالص ملي كشور آمريكا بواسطه مسئله خوردگي انواع سازه ها، اتومبيلها، صنايع و .... تلف مي شود. اين نشان دهنده اهميت علم خوردگي فلزات است. همچنين با عمليات خاص ميتوان در سطح فلزات، پوششهاي خاصي ايجاد كرد كه خصوصيات سطحي فلزات را بطور چشمگيري بهبود داد. بعنوان مثال ميتوان با ايجاد پوششهاي خاص سختي سطح فلزات را تا پانزده برابر افزايش داد. يا با ايجاد پوششهاي مناسب در سطح فلزي مثل آهن، آنها را در محيطهاي خورنده اي مثل اسيد سولفوريك به راحتي بكار برد. دانشجويان جزء مواردي كه در اين رشته با آن آشنا مي شوند خوردگي و روشهاي جلوگيري از آن و علم پوشش دهي فلزات است.
زمينه هاي اشتغال:
دانش آموختگان اين گرايش علاوه بر كار در كارخانجات توليد فلزات نظير توليد فولاد و ذوب آهن، مس، آلومينيوم، سرب و روي و ... مي توانند در مراكز تحقيقاتي در ارتباط با توليد فلزات مشغول به كار شوند. همچنين در صنايعي مثل نفت و پتروشيمي در ارتباط با مسائل بسيار مهم و حساس خوردگي فعاليت كنند.
زمينه هاي ادامه تحصيل:
دانشجويان پس از اخذ مدرك كارشناسي مي توانند اين رشته را در ايران در سطوح كارشناسي ارشد و دكتري ادامه دهند. دانشگاه علم و صنعت ايران تاكنون بيش از ده دوره فارغ التحصيل دوره دكتري در اين گرايش داشته است و هم اكنون فارغ التحصيلان آن در دانشگاههاي معتبر ايران و مراكز صنعتي و تحقيقاتي مشغول به كار هستند.
براي آن دسته از فارغ التحصيلان كارشناسي نيز كه قصد ادامه تحصيل در خارج از كشور را دارند، با توجه به سابقه خوبي كه دانشجويان ايراني در خارج از كشور داشته اند، دانشگاههاي خارجي به خوبي پذيراي فارغ التحصيلان اين گرايش هستند.

گرايش متالورژي صنعتي
رشته متالورژي صنعتي يكي از زير مجموعه‌هاي رشته مهندسي مواد است. در مهندسي مواد شناخت ساختار مواد و خواص آن و شناخت ارتباط بين اين ساختار و خواص در جهت افزايش زمينه‌هاي كاربردي و طراحي مواد نو و تركيبات جديد از اهميت ويژه‌اي برخوردار است.
با توجه به نام و محتوي اين رشته ملاحظه مي‌شود كه در اين رشته از علم شناخت فلزات و آلياژها در جهت كاربردهاي صنعتي استفاده مي‌شود. علم متالورژي كه يكي از شاخه‌هاي علم مواد مي‌باشد در زمينه طراحي و توليد آلياژهاي صنعتي كاربرد دارد. كليه قطعات مكانيكي كه در صنايع مختلف بكار مي‌رود از فلزات و آلياژهاي گوناگوني ساخته شده اند. انواع فولادها و چدن‌هاي آلياژي، آلومينيم و آلياژهاي آن، مس، منيزيم، روي و ساير فلزات به‌طور وسيع در ساخت انواع قطعات صنعتي مورد مصرف قرار مي‌گيرند. اين قطعات در صنايع مختلف به‌خصوص صنايع خودروسازي، هوا- فضا، هواپيماسازي، پتروشيمي، صنعت نفت و گاز، ساختمان، سازه‌هاي فضايي، حمل‌ونقل، صنايع نظامي به‌كار مي‌روند.
زمينه‌هاي كاربردي جديد:
رشته متالورژي صنعتي علاوه بر كاربردهاي متداول كه در صنايع گوناگون دارد در جهت طراحي و توليد مواد پيشرفته به‌سرعت در جهان در حال توسعه مي‌باشد. مواد مغناطيسي نو با خواص برتر، استفاده از مواد مركب (كامپوزيت) پايه فلزي‌، ساخت مواد پيشرفته از طريق تركيبات بين‌فلزي، ‌استفاده از آلياژهايي كه مي‌توانند جايگزين اعضاي بدن انسان شوند، ايجاد آلياژهاي سبك جهت توليد قطعات حساس، ‌طراحي و توليد آلياژهايي كه در دماهاي بالا به‌كار مي‌روند،‌ طراحي آلياژهايي كه در شرايط ويژه و سخت كاربرد دارند مثال‌هايي از كاربرد رشته متالورژي صنعتي در توليد مواد پيشرفته مي‌باشد. در سال‌هاي اخير رشته‌هايي مانند مواد زيستي و نانوتكنولورژي مورد توجه بسياري از محافل علمي، تحقيقاتي و صنعتي جهان قرار گرفته است كه رشته متالورژي صنعتي مي‌تواند نقش اساسي در جهت توسعه اين‌گونه مواد پيشرفته ايفا نمايد. دراين راستا در ايران و به‌خصوص دانشگاه علم و صنعت ايران در سال‌هاي اخير تحقيقات علمي گسترده‌اي صورت گرفته است و دانشكده مهندسي مواد و متالورژي به عنوان قطب علمي مواد پيشرفته كشور شناخته شده است. پژوهش و تحقيقاتي كه در اين رشته و با همكاري با ساير مراكز علمي جهان صورت مي‌گيرد در قالب مقالات علمي در معتبرترين مجلات جهان به‌چاپ مي‌‌رسد.
زمينه‌هاي اشتغال و ارتباط با ساير رشته‌ها:
به‌دليل كاربرد وسيع مواد و به‌خصوص فلزات در ساخت كليه قطعات صنعتي مي‌توان به زمينه اشتغال دانش‌آموختگان اين رشته در صنايع گوناگون پي‌برد. در بخش دولتي شركت‌ها و كارخانجات بزرگ نظير توليد فولاد، ذوب‌آهن، صنايع خودروسازي،‌ صنايع هوا- فضا، صنايع نظامي و صنعت نفت،‌پتروشيمي و ... و در بخش خصوصي اكثر كارخانجات توليد قطعات صنعتي به‌خصوص در صنايع خودروسازي، ساختمان‌سازي،‌ معادن ‌و صنعت سيمان مي‌تواند زمينه‌هاي جذب دانش‌آموختگان رشته متالورژي صنعتي را فراهم سازد. اين رشته‌ ماهيتاً‌ ارتباط نزديكي با دو رشته مهندسي مكانيك و مهندسي صنايع دارد واكثر پروژه‌هاي صنعتي به‌صورت كارگروهي و تيمي به انجام مي‌رسد.
زمينه‌هاي ادامه تحصيل در ايران و جهان:
دانش‌آموزاني كه علاقه‌مند به درك عميق پديده‌ها و رفتار مواد مختلف و يافتن كاربردهاي نوين و طراحي مواد جديد متناسب با نيازهاي روزافزون بشري مي‌باشند و همچنين علاوه‌بر داشتن علايق مهندسي،‌ خود را به علوم نيز نزديك حس مي‌كنند مي‌توانند در اين رشته موفق باشند.

گرايش سراميك
رشته سراميك يكي از زير مجموعه‌هاي رشته مهندسي مواد است. وظيفه اصلي يك مهندس مواد در ابتدا شناخت ساختمان مواد و خواص آن و شناخت ارتباط بين اين ساختار و خواص است و در مواردي ديگر با توجه به نياز كاربردي كه وجود دارد مواد جديد و تركيبات جديد را طراحي نمايد.
اما رشته سراميك به عنوان يك زير شاخه رشته مواد چيست؟
در ابتدا با شنيدن نام سراميك هر انساني به ياد ظروف سفالين مي‌افتد و بسياري فكر مي‌كنند كه رشته مهندسي سراميك يك رشته هنري است و گروهي ديگر اين تصور را دارند كه اين رشته محدود به ساخت محصولاتي چون ظروف سفالين، كاشي يا چيني مي‌باشد. اما نكته قابل توجه در رابطه با اين شاخه از علم مواد اين است كه با شناخت و ورود دست‌آوردهاي آن به دنياي صنعت يك مرحله جديد و يك تحول بزرگ پديد آمد. اين شاخه كه بسيار هم جوان است ‌سبب شد تا تحول بزرگي درصنايع فضا، الكترونيك، اپتيك، پزشكي و بسياري از علوم ديگر پديد آيد.
بطور كلي اگر تعريفي از سراميك به شكل ساده و ابتدايي بدهيم بايد بگوييم كه مواد سراميك عبارتند از مواد معدني غيرفلزي. كافي است كه به اطراف خود نگاه كنيد، هر آنچه كه جزء مواد آلي (مانند پلاستيك، چوب و لاستيك)و فلزي نباشد سراميك است. پس مي‌بينيم كه در دنياي كنوني سراميك‌ها ما را محاصره نموده‌اند. شيشه‌ها از جمله شيشه‌هاي ساختماني، اپتيك، فيلترهاي بسيار دقيق اپتيكي، مصالح ساختماني از جمله سيمان، كاشي،‌ چيني بهداشتي، نسوزها و كلاهك‌ها و پوشش‌ بيروني موشك‌هاي فضاپيما و قطعات اصلي كامپيوتر‌ها، اجزاي دروني قطعات الكترونيك از جمله Ic
ها، خازن‌ها،‌ مقاومت‌ها،‌ ايمپلانت‌ها و بسياري از قطعاتي كه جايگزين اعضاي بدن انسان مي‌شود، فروالكتريك‌ها، فري مغناطيس‌ها و فوق‌هادي‌ها و بسياري كاربردها و مواد ديگر كه همه و همه مديون شناخت و بوجود آمدن رشته سراميك است. در سال‌هاي اخير رشته‌هايي مانند مواد زيستي و نانوتكنولوژي مورد توجه بسياري از محافل علمي، تحقيقاتي و صنعتي جهان قرار گرفته است كه رشته سراميك با دوشاخه بايو سراميك‌ها و نانو سراميك‌ها در اين رشته‌ها مطرح مي‌باشد.
به طوركلي سراميك‌ها به دو دسته سنتي و مدرن تقسيم مي‌شوند. در ايران به شكل عمده صنعت سراميك متمركز بر توليد سراميك‌هاي سنتي است كه شامل صنايع شيشه،‌ چيني،‌ كاشي،‌سيمان،‌ نسوز و ... بوده است. امكان ادامه تحصيل در اين رشته تا مقطع دكترا درداخل كشور وجود دارد، وضعيت ادامه تحصيل در دانشگاه‌هاي خارج از كشور نيز در اين رشته بسيار مطلوب مي‌باشد و اين رشته بسيار مورد توجه جوامع صنعتي و دانشگاهي جهان است.
از ديدگاه وضعيت بازار كار،‌ با توجه به رشد قابل توجهي كه اين صنعت در ايران داشته و دارد، بازار كار مناسبي را مي‌توان براي آن متصور شد. هر چند با ظرفيت قابل ملاحظه‌اي كه سالانه در اين رشته جذب دانشگاه‌ها مي‌شوند تا حدودي از قطعيت اين سخن كاسته مي‌شود. نزديكي اين شاخه از مهندسي با رشته‌هاي فيزيك و شيمي بيش از تمامي رشته‌هاست و بسته به شاخه‌هاي خاص به هر يك از دو رشته فيزيك و شيمي كاربردي نزديك مي‌شود. دانش‌آموزاني كه علاقمند به درك عميق‌تر علل پديده‌هاي رفتاري مواد مختلف و يافتن كاربردهاي نوين و طراحي مواد جديد متناسب با نيازهاي روزافزون بشري مي‌باشند و به طور كلي علاوه بر داشتن علايق مهندسي خود را به علوم نيز نزديك حس مي‌كنند، مي‌توانند در اين رشته موفق باشند.
درهرحال كشور ما داراي خلاء هاي بسياري براي محصولات و شاخه‌هاي جديد و نوين سراميكي است.همگام با توسعه همه جانبه كشورنياز فراواني به مهندسان و دانشمندان تحصيل كرده در اين رشته وجود خواهد داشت و هر فرد متخصص با دارا بودن جديت، اعتماد به نفس و پشتكار مي‌تواند بازار كاري مناسبي براي خود پديد آورد
.


دسته بندی :

بررسي تاثير عناصر آلياژي بر خواص فولاد

اغلب در حين بررسي نتايج آزمايش آناليز فولادها به وجود عناصري برمي خوريم که اطلاع از چگونگي تاثير عناصر فوق ساختار فولادها از جمله الزامات دانش فني مهندسين مي باشد لذا با استفاده ازمقدمه کتاب کليد فولاد(نويسنده:C.W.Wegst) سعي در معرفي ابتدايي برخي عناصر موجود در ساختار فولادها شده است.


کربن


کربن مهمترين و موثرترين عنصر آلياژي در فولادها مي باشد و بالاترين تاثير را در ساختار آن دارد.هر فولاد آلياژ شده علاوه بر کربن عناصر آلياژي ديگري نظير سيليسيم – منگنز-فسفر و گوگرد را به همراه خواهد داشت بطوريکه اين عناصر به شکلي ناخواسته به هنگام فرايند توليد در فولاد باقي خواهند ماند.اضافه کردن عناصر آلياژي براي بدست آوردن نتايج مشخص و منحصر بفرد و افزايش کنترل شده منگنز و سيليسيم در فولاد , فولاد آلياژي را بوجود خواهد آورد. با افزايش ميزان کربن استحکام . سختي پذيري فولاد فولاد بيشتر ميشود اما چکش خواري و قابليت جوشکاري و ماشينکاري (با استفاده از ماشينهاي برش) کاهش


 مي يابد.اين عنصر عملا هيچ تاثيري بر مقاومت خوردگي در آب, اسيد و گازهاي گرم ندارد.

کلسيم


در ترکيب با سيليسيم به شکل سيليسيم –کلسيم در رکسيژن زدايي فولادها به کار مي رود.کلسيم, مقاومت در برابر پوسته شدن مواد هادي حرارت را افزايش مي دهد.

سديم

اين عنصر يک اکسيژن زداي مسلم و نيرومند است و گوگرد زدايي را نیز سرعت و شتاب می دهد.به همین دلیل یک عنصر پالایشی در فولادها محسوب می گردد. وجود این عنصر در فولادهای پرآلیاژ باعث گستردگی دامنه فرآیند شکل گیری گرم می شود.همچنین مقاومت فولادهای نسوز را در برابر پوسته شدن بهبود می بخشد.آلیاژهای آهن-سدیم با مقادیر تقریبی 70% سدیم دارای خواص آتش دهندگی(مانند سنگ چخماق) هستند و در تولید چدنهایی با گرافیت کروی مورد استفاذه قرار می گیرد.  

کبالت


کبالت هیچ کاربیدی را تشکیل نمی دهد. در دمای بالا از رشد دانه ها جلوگیری می کند.مقاومت در برابر تنشهای ناشی از بازپخت را افزایش می دهد و موجب بهبود استحکام مکانیکی فولاد در برابر دمای بالا می شود.لذا به عنوان یک عنصر آلیاژی در فولادهای ابزاری گرم کار,فولادهای مقاوم در برابر خزش و فولادهای دیرگداز به کار می رود.وجود کبالت شکل گیری گرافیت کروی را تسریع می کند.در کمیتها و مقادیر بالا, پایداری مغناطیسی,نیروی مغناطیس زدایی و هدایت حرارتی را افزایش می دهد.لذا به عنوان یک عنصر پایه در آلیاژها و فولادهای مغناطیسی دایم مرغوب به کار می  رود. این عنصر تحت تاثیر تابش نوترونی, رادیوایزوتوپ 60 کبالت را شکل می دهد. به همین دلیل برای فولادهایی که در راکتورهای اتمی بکار برده میشوند مناسب نمی باشد.

کرم


وجود عنصر فوق باعث سختی پذیری فولاد در هوا و روغن می باشد. کرم با کاهش سرعت خنک سازی بحرانی, به وسیله شکل دادن ساختار مارتنزیتی, قابلیت سخت کاری را افزایش می دهد.بنابراین سبب بهبود حساسیتهای سخت  کاری و بازپخت می شود.اما در هر صورت چقرمگی کاهش می یابد.و از انعطاف پذیری یا شکل پذیری فولاد به مقدار کمی کاسته می گردد با افزایش کرم در فولادهای ساده کرم دارجوش پذیری کاهش می یابد.با اضافه نمودن هر واحد  1% کرم به عنوان یک عنصر کاربید سازاستحکام کششی فولاد به میزان 100_80نیوتن بر میلیمتر مربع افزایش می یابد.کرم به عنوان یک عنصر کاربید ساز بکار برده می شود.کاربیدهای این عنصر کیفین نگهداری لبه ها و مقاومت سایشی را افزایش می دهد. کرم موجب مقاومت فولاد در دماهای بالا می شود و در برابر هیدروژن تحت فشارخواص مواد را افزایش می دهد.با افزایش کرم مقاومت در برابر پوسته شدن فولادها نیز بهبود می یابد.به طور تقریب حداقل 13% کرم مورد نیاز است تا مقاومت خوردگی فولادها نیز بهبود یابد.این مقدار کرم باید در قابل فلزی حل شود.این عنصر موجب محدودین دامنه فاز گاما می شود و باالعکس ئامنه فاز فریتی را افزایش می دهد.همچنین باعث پایداری آستنیت در فولادهای آستنیتی کرم-منگنزیا کرم-نیکل شده و سبب کاهش هدایت الکتریکی و حرارتی می شود و انبساط حرارتی را نیز کاهش می دهد.(آلیاژهایی برای آببندی شیشه)با افزایش همزمان میزان کربن و کرم تا میزان 3% پایداری مغناطیسی و شدت نیروهای پسماند زدا افزایش می یابد.

مس


مس بعنوان یک فلز آلیاژی به تعداد بسیار کمی از فولادها اضافه می شود.زیرا این فلز به زیرلایه های  سطحی فولاد تمرکز یافته و در فرآیند شکل دهی گرم با نفوذبه مرز دانه ها ,حساسیت سطحی را در فولادها بوجود می آورد.لذا به عنوان یک فلز مخرب در فولادها محسوب می گردد.به واسطه حضور مس نقطه تسلیم و نسبت نقطه تسلیم به استحکام نهایی افزایش می یابد.این عنصر در مقادیر بالای 30%موجب سختی رسوبی میشود و بدین ترتیب سختی پذیری نیزبهبود می یابد.اما قابلیت جوشکاری به واسطه حضور مس تغییری نمی کند.در فولادهای آلیاژی ساده و پرآلیاژ مقاومت جوی به میزان کافی بهبود می یابد.مقادیر بالاتر از 1% مس موجب بهبود مقاومت در برابر واکنشهای اسید کلریدریک و اسید سولفوریک می شود.

هیدروژن


هیدروژن یک عنصر مخرب در فولاد تلقی می گردد. زیرا بدون آنکه نقطه تسلیم و استخکام کششی فولاد را افزایش دهد,موجب تردی و شکنندگی فولاد می گردد.انعطاف پذیری را کم کرده و باعث کاهش سطح مقطع می باشد. هیدروژن  سبب پوسته شدن ناخواسته سطح فولاد میگردد و ایجاد خطوط رنگین ناشی از ترکیبات را شتاب می دهد.هیدروژن اتمی ایجاد شده ,در خلال فرایند اکسیژن زدایی در فولاد نفوذ کرده و حفره هایی را تشکیل می دهد(مک)که  در فرآیند جوشکاری(پروزیتی) نام دارد.هیدروژن مرطوب در دمای بالا باعث کربن زدایی فولاد می باشد.

منیزیم


این عنصر موجب تشکیل گرافیت کروی در چدن می باشد.

منگنز


منگنز یک اکسیژن زداست.این عنصر با گوگرد ترکیب شده و تشکیل سولفید منگنز می دهد.بر همین اساس اثرات نامطلوب اکسید آهن را از بین می برد.وجود این عنصر در فولادهای خوش تراش بسیار مهم است.زیرا خط قرمز شکنندگی را کاهش می دهد.منگنز سرعت خنک شدن بخرانی را نیز به شدت کم می کند به همین دلیل سختی پذیری و نقطه تسلیم و استحکام نهایی را افزایش می دهد.با اضافه نمودن منگنز تاثیرات مطلوبی در قابلیتهای آهنگری و جوشکاری فولاد بوجود می آید و بطور قابل ملاحظه ای عمق سختی فولادها را بیشتر می کند.اگر سطح این نوع فولادها در معرض تنشهای ضربه ای قرار گیرد به مقدار بسیار زیادی کارسخت حواهد شد در حالیکه مغز فولاد چقرمگی اولیه خود را حفظ میکند لذا این گروه از فولادها تحت تاثیر نیروهای ضربه ای(کارسختی) مقاومت سایشی مطلوبی از خود نشان می دهند.با افزایش منگنز ضریب انبساط حرارتی افزایش یافته در حالیکه هدایت الکتریکی کاهش می یابد. منگنز باعث افزایش خاصیت فنری می شود.

مولیبدن


این عنصر به طور معمول با عناصر دیگر آلیاژ می شود.در فولاد کرم-نیکل دار و فولاد منگنز دار سبب ریز دانه سازی می شود.و باعث بهبود قابلین جوشکاری می شود و نقطه تسلیم و استحکام نهایی را بالا می برد. با ازدیاد درصد مولیبدن جوش پذیری کاهش می یابد.و سازنده مسلم فاز کاربید است و در فولادهای تند بر خواص برشکاری را بهبود می بخشد.مقاومت خوردگی را بالا می برد.


نیتروژن


این عنصر به دو صورت ظهور می کند


1-بصورت یک عنصر مخرب که به دلیل کاهش چقرمگی  در خلال فرآیند ته نشینی رسوبی است  که موجب ایجاد حساسیت در برابر پیری و شکنندگی آبی(تغییر شکا در درجه خرارت آبی300-350  درجه سانتیگراد)  می شود و امکان ایجاد تنش در ترکهای درون بلوری فولادهای غیرآلیاژی و کم آلیاژ را فراهم می سازد.


2-بصورت عنصری آلیاژی دامنه فاز گاما را افزایش می دهد و ساختار آستنیتی را استحکام می بخشد در فولادهای آستنیتی استحکام را افزایش می دهد و باعث افزایش نقطه تسلیم و خواص مکانیکی در گرما می شود.


آلومینیوم


یکی از قویترین اکسیژن زداها  و نیتروژن زداهاست.و بر اساس نتیج بدست آمده تاثیر بسیار زیادی برای مقابله با کرنشهای ناشی از پیری دارد.در ترکیب با نیتروژن تشکیل نیترور سخت می دهد که باعث  افزایش مقاومت در برابر پوسته ای شدن می شود به همین دلیل به عنوان عنصری آلیاژس برای مقاومت حرارتی فولادها بکار می رود.


ارسنیک


دامنه فاز گاما را محدود میکند لذا عنصری مخرب شناخته می شود زیرا مانند فسفر میل شدیدی به جداسازی ریزدانه های عناصر مختلف دارد. شکنندگی ناشی از بازپخت را افزایش داده و باعث کاهش شدید چقرمگی و قابلیت جوشکاری میگردد.

 


از ادامه معرفی عناصر دیگر مانند بور,بریلیم,تانتالیم,کلومبیوم,آنتیموان,سلنیم,سیلسیم,نیکل,اکسیژن,فسفر,تنگستن,قلع,تیتانیم بدلیل خارج بودن از حوصله صرفنظر شده است.


دسته بندی :

نرم افزار آنلاین مربوط به رسم دیاگرام ‏TTT‏ و یا ‏CCT‏ فولاد

نرم افزار آنلاین مربوط به رسم دیاگرام ‏TTT‏ و یا ‏CCT‏ فولاد

‏1 نرم افزار آنلاین اول مربوط به رسم دیاگرام ‏TTT‏ و یا ‏CCT‏ فولاد می باشد. این دیاگرام ها در عملیات ‏حرارتی فولاد بسیار مهم و کاربردی می باشند. برای دریافت دیاگرام برای فولاد مورد نظر ابتدا وارد نرم افزار ‏آنلاین شوید:‏


فرم مربوطه را با توجه به مشخصات فولاد تکمیل کنید:‏
‏- درصد کربن، سیلیسیم، منگنز، نیکل، مولیبدن، کروم، وانادیم، کبالت فولاد را وارد کنید. مقدار بور را باید ‏برحسب ‏ppm‏ (تعداد در ملیون) وارد کنید.‏
‏- دمای آستنیته فولاد را بر حسب کلوین وارد کنید، اگر می خواهید دمای ‏Ae3‎‏ به عنوان دمای آستنیته فولاد در ‏نظر گرفته شود عدد صفر را وارد کنید.‏
‏- حداقل و حداکثر سرعت سرد کردن را بر مبنای کلوین/ثانیه وارد کنید.‏
‏- در صورت نیاز می توانید حداقل و حداکثرزمان مندرج روی نمودار را تغییر دهید(بر حسب ثانیه).‏
‏-قسمت آخر مربوط به مشخصات استفاده کننده می باشد. نام، نام خانوداگی و آدرس ایمیل خود را وارد کنید.‏

برای مشاهده نمودار دکمه ‏Make Graph‏ را فشار دهید.‏

‏2. نرم افزار آنلاین دوم مربوط به پیش بینی ریزساختار و سختی ویکرز ناحیه جوش فولاد می باشد. برای به دست آوردن ‏این مقادیر ابتدا وارد نرم افزار آنلاین شوید.‏

فرم مربوطه را با توجه به مشخصات فولاد تکمیل کنید، پر کردن فرم مشابه مورد قبل می باشد.‏

http://calculations.ewi.org/vjp/secure/AshbyModel.asp


دسته بندی : نرم افزار

رویکرد نانوتکنولوژی

 

 

علم نانو (Nano - science) و فناوری متکی بر آن یا به اختصار ، فناوری نانو (Nano - technology) در کنار علوم و فناوریهای مرتبط با زیست شناسی و ژنتیک مولکولی ، علوم و فناوری اطلاعات ، مولفه‌های انقلاب سوم علمی - صنعتی عصر جدید را تشکیل می‌دهند. این انقلاب ادامه منطقی انقلابهای علمی اول و دوم است که منجر به پیدایش علوم و فناوریهای مقیاسهای ماکرو و میکرو گشتند.

انقلاب سوم و بویژه مولفه‌های علوم و فناوری مقیاس نانو در آن برای اولین بار در تاریخ جوامع بشری امکان دستکاری و دخالت عمدی و اختیاری در خواص و سازماندهی ماده فیزیکی و اساسی‌ترین سطوح آن ، یعنی مقیاسهای زیر اتمی و مولکولی را فراهم خواهد آورد.

نقش نانو ساختارها در فناوری نانو

علم نانو ایجاد دانشهای بنیادی برای اعمال کنترل کامل بر ساختار و عملکرد ماده فیزیکی در مقاسهای اتمی و مولکولی را هدف خود برای اعمال کنترل کامل بر ساختار و عملکرد ماده فیزیکی در مقیاسهای اتمی و مولکولی را قرار داده است و فناوری نانو نوید می‌دهد که این دانشها در آینده‌ای نه چندان دور در قالب مهندسی در آیند.
از طریق فناوری نانو خواهیم توانست با جایگذاری تک اتمها و تک مولکولها در کنار یکدیگر از پایین به بالا ساختارهای نوینی را که به
نانو ساختارها (nano - structures) موسوم‌اند. و دارای خواص و عملکردهای کاملا نوین می‌باشند بوجود آوریم. با استفاده از این ساختارها دستگاهها ، ادوات و قطعات فوق ریزی که در مقیاسهای طولی و زمانی بسیار تقلیل یافته فعالیت می‌کنند، تولید نماییم. نانو ساختارها سنگ بنای فناوری نانو هستند.


از نظر اندازه در فاصله بین ساختارهای مولکولی و ساختارهای میکرونی قرار دارند. از تعداد قابل شمارشی از اتمها تشکیل می‌شوند و نسبت سطح به حجم آنها بسیار بالاست. شکل جدیدی از ماده فیزیکی‌اند که برای درک خواص آنها بویژه خواص الکترونی و مقیاسی آنها باید به مفاهیم بسیار پیشرفته مکانیک کوانتومی دستگاههای بس ذره‌ای متوسل شد. از آنجایی که خواص مواد قویا به اندازه اجزا تشکیل دهنده آنها یا ریز دانه‌های آنها وابسته است. موادی که ریز دانه‌های آنها در مقیاس نانو طراحی می‌شوند از کیفیتهای نوینی برخورد دارند که در مواد معمولی موجود نیستند.
نانو ساختارها در همه زمینه‌ها به چشم می‌خورند. چه در دستگاههای زنده و چه غیر زنده. وجود نانو ساختارهای زیستی از قبیل آنزیمها ، گواه بر این واقعیت است که طبیعت خود بهترین شکل فناوری مقیاس نانو را بوجود آورده است. علوم سنتی یعنی فیزیک ، شیمی ، ریاضیات ، ژنتیک ، علم مواد ، مهندسی پزشکی ، که در مقیاسهای ماکرو و میکرو حوزه‌های فعالیت مجزا و مستقلی هستند، در مقیاس نانو به سمت اصول ، ساختارها و ابزارهای واحدی گرایش می‌یابند.

انواع رویکردهای نانو تکنولوژِی

در نتیجه ، علوم فناوری نانو عمیقا میان رشته‌ای بوده و دستاوردهای بس شگرفی برای بشریت خواهند داشت و افقهای کاملا جدیدی را برای پیشرفت و بهروزی جوامع و مبارزه موثر با بیماریها و گرسنگی خواهند گشود. رسیدن به مقیاس نانو از طریق رویکرد از پایین به بالا یکی از گزینه‌های علم و فناوری نانو است. رویکرد دیگر در علم فناوری نانو ، رویکرد از بالا یه پایین ، یا بیرون کشیدن نانو ساختارها از درون ساختارهای بزرگتر است. این رویکرد به نام برنامه کوچک سازی (miniaturization program) مشهور گشته است و همراه با رویکرد اول ، بسترهای اساسی برای پیشرفت برنامه عظیم جهانی علوم فناوری نانو هستند.

علوم فناوری نانو ، همراه با فناوری زیسی متکی بر ژنتیک مولکولی که در برنامه بزرگ ژنوم انسانی متجلی گشته است. و فناوری اطلاعات که با پیشرفت عظیم قدرت محاسباتی رایانه‌ها ، در شکل ابر رایانه‌ها سکوهای گرافیک محاسباتی و رایانه‌های فردی ، جهش‌وار به پیش می‌رود. مبانی علم و فناوری قرن بیست و یکم را تشکیل می‌دهند و سیمای پیشرفت جوامع بشری را تا حداقل پنجاه سال آینده ترسیم می‌کنند.

فناوری نانو در آینده نه چندان دور

واقعیت این است که بشر در آستانه بزرگترین تحول و دگرگونی تاریخ خود قرار دارد و این تحول همه چیز را در همه عرصه‌های زندگی بشر ، بطور انقلابی دگرگون خواهد ساخت. فناوری نانو ، جهان را در آستانه بزرگترین انقلاب تاریخ قرار داده است. در سایه انقلاب فناوری نانو توانمندیهای تازه‌ای در تولید و کاربرد ابزار میکرو الکترونیک یکی پس از دیگری پدیدار خواهد شد. با استفاده از این فناوری ابزار و وسایل لازم با بهره گیری از روشهای ساخت مولکولی مشابه با آنچه در اندام انسانی روی می‌دهد تولید می‌شوند.

پیامدهای فناوری نانو با توجه به این نکته که این فناوری می‌تواند در نقطه تلاقی دانش اطلاعات و دانش زیستی عمل نماید کاملا حیرت انگیز خواهد بود. رایانه‌های مولکولی با اجزا ارگانیک و زنده در تماس و ارتباط خواهند بود. انسانها در 25 سال آینده وسایل اطلاع رسانی شخص خود را در حالی با خود حمل خواهند کرد که آن را به نوعی پوشیده‌اند و نیروی لازم برای آن را از انرژی جنبشی ناشی از راه رفتن خود تامین می‌کنند.
محط کار ما بطور مجازی و مطابق نیاز و سلیقه ما همه جا همراه خواهد بود و مردم همه دنیا با حجم زیادی از اطلاعات در هر زمان و مکان قابل دسترسی خواهند بود. هنگام سفر نیز خودروهای رایانه‌ای و هوشمند خود راننده در ارتباط شبکه‌ای با پایگاههای مرکزی بوده و دسترسی دائمی به آخرین اطلاعات مورد نیاز امکان پذیر خواهند نمود و قبل از رسیدن به خانه و لوازم منزل و محیط خانه را با برنامه ریزی و ارتباط با یکدیگر مطابق دلخواه ماآماده خواهند کرد.

در زمینه فناوری
میکرو الکترومکانیکها (MEMS) ما به وسایلی دست پیدا خواهیم کرد که در آنها حسگرها و فرستنده‌ها و گیرنده‌ها در حداقل اندازه خود بوده و با چنین وسایلی زندگی ما به شدت متحول خواهد شد. به عنوان نمونه هنگام بیماری پزشکان همزمان با ما و یا حتی زودتر از ما از آن آگاه خواهند شد. در زمینه فناوری زیستی امکان همانند سازی انسان و سایر موجودات زنده گزینش جنسیت و حتی صفات خاص در نوزادان فراهم شده و امکان درمان بسیاری از بیماریهای حاد و مزمن حسی عصبی با فناوری کشت سلولی مقدور خواهد شد.

نانو تکنولوژی در ایران

برای کشور در حال توسعه ایستایی نظیر کشور ما نیز گزینش استراتژی فرا صنعتی علاوه بر حیاتی و اجتناب ناپذیر بودن آن ، این حسن را نیز دارد که توجه جامعه را از مسائلی انحرافی و مشکلات کاذبی نظیر منازعه کهنه و نخ نما شده 250 ساله طرفداران سنتگرایی و مدرنیسم ، آن هم از نوع سطحی و عوامانه و کپی برداری شدهاش که مربوط به مناسبات سپری شده سرمایه داری تا جز (نه تجاری) و صنعتی هستند.


کمتر کشوری در جهان است که نیروی انسانی مستعد و شرایط و امکانات مناسب برای پیشرفت و توسعه را همانند کشور ما به یکجا داشته باشد. شاید با قرار دادن هدف شفاف و روشنی در برابر جامعه ، مردم انگیزه کافی برای جنبش و حرکت پیدا کند و اقتصاد بیمار مبتنی بر دلالی جای خود را به یک اقتصاد دانشمحور بدهد، مردمی که در پیدایش تمدن کشاورزی نقش برجستهای داشتند و دستاوردهای آن را در سیاهترین دوره تاریخی غرب (قرون وسطی) در زیر سم ستوران قبایل وحشی مهاجم حفظ کردند و آنرا به تمدن صنعتی تحویل دادند.

اینکه این شایستگی را دارند که در ایجاد و پی ریزی یک دوره تاریخی جدید نقش برجسته‌ای ایفا کنند و از مردم هوشمند ایران غیر از این نیز انتظار نمی‌رود و تنها در اینصورت است که می‌توان انتظار داشت. نه فقط در عرصه علم بلکه در همه جنبه‌های تمدن و فرهنگ همانند دوره میترائیسم تا قرنهای اول تمدن اسلامی که سراسر مناطق شناخته شده زمین از ژاپن و چین تا انگلستان و از زنگبار تا اسکاندیناوی از تمدن ما تاثیر پذیرفتند و این بار نیز به جای انفعال و تاثیر پذیری در سراسر جهان تاثیر گذار باشیم و مهر خود را بر پای تمدن فراصنعتی بکوبیم.

چشم انداز علم نانو تکنولوژی

انقلاب جهانی تکونولوژی با تغییرات اجتماعی ، اقتصادی ، سیاسی و فردی در سراسر جهان همراه است. همچون انقلابهای کشاورزی و صنعتی در گذشته ، این انقلاب تکنولوژی نیز از پتانسیل دگرگون سازی کیفیت زندگی و طول عمر ، متحول سازی کار و صنعت ، تغییر و تبدیل ثروت ، جابجایی قدرت در سطح ملتها و در درون ملتها و افزایش تنش و تعارض برخوردار است.

پیامدهای انقلاب یاد شده بر سلامی بشر شاید شگفت آورترین آنها باشد. چرا که خط شکنیهای علمی کیفیت و طول زندگی انسان را به مراتب بهتر خواهند کرد. بیوتکنولوژی نیز ما را قادر خواهد ساخت ارگانیزمهای زنده از جمله خودمان را شناسایی نموده ، چگونگی فعالیتشان را درک کنیم، آنها را دستکاری کرده ، بهبود بخشیده و تحت کنترل در آوریم. تکنولوژی اطلاعات امروزه بویژه در کشورهای توسعه یافته تحولات انقلابی برای زندگی ما به ارمغان آورده و خود عامل توان آفرین عمده‌ای برای سایر روندها به شمار می‌رود.

تکنولوژی مواد ، تولید محصولات ، قطعات و سیستمهای ارزانتر ، هوشمندتر ، چند منظوره سازگار با محیط زیست ، ماندگارتر و سفارشی‌تر از مسیر خواهد ساخت. علاوه بر این مواد هوشمند ، ساخت و تولید چالاک و نانو تکنولوژی ، تولید وسایل را متحول ساخته و توانمندیهای آنها را بهبود بخشید. انقلاب تکنولوژی از حیث اثرات جهانی یکسان عمل نخواهد کرد و بسته به میزان استقبال از آن سرمایه گذاری و مسائل متعددی همچون بیواخلاق ، حریم خصوصی ، نابرابری اقتصادی ، تهاجم فرهنگی و واکنشهای اجتماعی تنشهای متفاوتی ایفا خواهد نمود.
اما راه بازگشتی وجود ندارد، چون برخی جوامع فرصت را غنیمت شمرده ، از انقلاب یاد شده سود برده و محیط زندگی همه جوامع را دستخوش تغییر خواهد کرد.


دسته بندی :

عملیات حرارتی چدن نشکن

مهمترین عملیات حرارتی که روی چدن نشکن انجام می شود و هدف از انجام آنها :
عملیات حرارتی که در دمای پایین برای کاهش یا آزاد کردن تنش های داخلی باقی مانده پس از ریخته گری انجام می شود.
● آنیل کردن
عملیات حرارتی که برای بهبود انعطاف پذیری و چقرمگی ، کاهش سختی و حذف کاربیدها انجام می شود.
● نرماله کردن
عملیات حرارتی که به منظور بهبود استحکام به همراه کمی انعطاف پذیری انجام می شود .
● سخت کردن و تمپر کردن
عملیات حرارتی که به منظور افزایش سختی یا بهبود استحکام و بالا بردن نسبت تنش (تنش تسلیم) انجام می شود .
● آستمپر کردن
عملیات حرارتی که به منظور بدست آمدن ساختاری با استحکام بالا به همراه کمی انعطاف پذیری و مقاومت به سایش عالی انجام می شود .
● سخت کردن سطحی به وسیله ی القاء ، شعله یا لیزر
عملیات حرارتی که به منظور مقاوم به سایش ساختن و سخت کردن موضعی سطح انتخاب شده انجام می شود .
در این مقاله عملیات آنیلینگ ، نرماله کردن ، آستمپر کردن ، کونچ کردن و تمپر کردن چدن نشکن شرح داده می شود.

آستنیته کردن چدن نشکن:

هدف معمول آستنیته کردن این است که تا حد امکان زمینه ی آستنیتی با مقدار کربن یکسان قبل از پروسه ى حرارتى تولید شود. به عنوان مثال در چدن نشکن هیپریوتکتیک برای آستنیته کردن باید از دماى بحرانى کمی بالاتر برویم به طورى که دماى آستنیته در منطقه ى دو فازى ( آستنیت و گرافیت ) باشد. دماى آستنیته کردن به وسیله ى عناصر آلیاژى موجود در چدن نشکن تغییر مى کند
با افزایش دمای آستنیته کردن می توان آستنیت تعادلی حاوى کربن که در حال تعادل با گرافیت است را افزایش داد. که این پارامتر قابل انتخاب است( در زمان محدود). کربن موجود در زمینه ی آستنیتی کنترل دمای آستنیته کردن را مهم ساخته که این دما به منظور جلو بردن واکنش به مقدار زیادی به کربن موجود در زمینه ی آستنیتی بستگی دارد ، این ساختار مخصوصاً برای آستمر کردن ساخته می شود ، سختی پذیری (قابلیت آستمپر کردن ) به میزان زیادی به کربن موجود در زمینه و در واقع به عناصر الیاژی موجود در چدن نشکن بستگی دارد ، میکرو ساختار اصلی و سطح مقطع قطعه تعیین کننده ی زمان مورد نیاز برای آستنیته کردن می باشند
مراحل بعد از آستنیته کردن هنگامی که مورد اهمیت باشند عبارتند از : آنیل کردن ، نرماله کردن ، کونچ و تمپر کردن و آستمپر کردن


آنیلینگ چدن نشکن :
هنگامی که حداکثر انعطاف پذیری و قابلیت ماشینکاری عالی مورد نیاز باشد و استحکام بالا مورد نیاز نباشد ، عموماً چدن نشکن آنیل فریتی می شود . بدین گونه که میکروساختار به فریت متحول می شود و کربن اضافی به صورت می باشد، اگر ماشینکاری عالی مورد 60-40-18 نوع ASTM کروی رسوب می کند. این عملیات حرارتی ساخته ی نیاز باشد باید مقدار منگنز ، فسفر و عناصر آلیاژی از قبیل کرم و مولیبدن درحد امکان پایین باشد زیرا باعث آهسته کردن پروسه ی آنیل می شوند .
نحوه ی آنیل کردن توصیه شده برای چدن نشکن آلیاژی و چدن نشکن با کاربید یوتکتیک و بدو ن کاربید یوتکتیک در پایین شرح داده شده است :
آنیل کامل برای چدن نشکن با 2%-3% سیلیسیم و بدون کاربید یوتکتیک :
گرم کردن تا دمای 870- 900 درجه ی سانتی گراد و نگهدار ی در این دما به مدت 1 ساعت در ازای هر اینچ ضخامت ،سپس سرد کردن در کوره با سرعت 55 درجه سانتی گراد در ساعت تا دمای 345 درجه ی سانتی گراد سپس سرد کردن در هوا.
آنیل کامل در صورت وجود کاربید یوتکتیک :
گرم کردن تا دمای900C-870C و نگهداری در این دما برای 2 ساعت و بیشتر از این زمان برای ضاخمت های زیاد ، سپس سرد کردن در کوره با سرعت 110C/hتا دمای 700Cو نگهداری در این دما برای 2 ساعت ، سپس سرد کردن در کوره تا دمای 345Cبا سرعت 55C/h ، سپس سرد کردن در هوا .
آنیل کردن زیر منطقه ی بحرانی برای تبدیل پرلیت به فریت:
گرم کردن قطعات تا دمای705C-720Cونگهداری در این دما به مدت 1 ساعت در ازای هر اینچ ضخانت ، سپس سرد کردن در کوره با سرعت55C/h تا دمای 345C و سپس سرد کردن در هوا .
وقتی که در چدن نشکن عناصر آلیاژی وجود داشته باشد از سرد کردن سرتاسری قطعه جلوگیری می شود و کاهش درجه حرارت از نقطه ی بحرانی تا400C ادامه می یابد و سرعت سرد کردن از55C/h کمتر می باشد .
به هر حال برخی عناصر در شکل کاربید خود اگر تجزیه ناپذیر باشند به شکل کاربید اولیه که بسیار سخت است می باشندکه این حالت بیشتر در کرم می باشد ، به عنوان مثال% 0.25 کرم باعث تشکیل کاربید اولیه ی بین نشینی می شود که در اثر عملیات حرارتی تا دمای 925C و نگهداری در مدت2h-20h حتی نیز از بین نمی رود . زمینه ی حاصل از رسوب پرلیت ، زمینه ی فریتی با کاربید می باشد که فقط 5% ازیاد طول دارد .
نمونه های دیگری از عناصر که به شکل کاربید در چدن نشکن وجود دارند عبارتند از مولیبدن بیشتر از 0.3% و وانادیم وتنگستن در مقدیر بیش از 0.05%.

سختی پذیری چدن نشکن :

سختی پذیری چدن نشکن یک پارامتر مهم تعیین کننده ی واکنش ثابت آهن برای نرماله کردن ، کونچ کردن و تمپرکردن یا آستنیته کردن می باشد.
سختی پذیری معمولاً به وسیله ی آزمایش جامینی تعیین می شود ، که در آن از یک میله با اندازه ی استاندارد (قطر 1 اینچ و ارتفاع 4 اینچ) استفاده می شود که آن را آستنیته می کنند سپس یک سر آن را به وسیله ی آب سرد می کنند ، نوسان در سرعت سرد کردن باعث بی ثباتی (متفاوت بودن) در میکروساختار می شود که سختی آنها تغییر می کند سپس آنها را تعیین و ثبت می کنند.
زمینه ی با کربن بالا باعث بالا رفتن دمای آستنیته کردن و در نتیجه ی آن باعث افزایش سختی پذیری می شود (منحنی جامینی فاصله ی زیادی تا پایان سرد کردن پیدا می کند ) و همچنین قطعه حداکثر سختی بالاتری پیدا می کند.
هدف از اضافه کردن عناصر آلیاژی به چدن نشکن افزایش سختی پذیری است ، منگنز و مولیبدن برحسب وزن اضافه شده به چدن نشکن نسبت به مس و نیکل عناصر بسیار موثری در افزایش سختی هستند.
در هر حال همانند فولاد افزودن ترکیب نیکل - مولیبدن یا مس - مولیبدن یا مس - نیکل - منگنز نسبت به اینکه این عناصر را به صورت جداگانه به چدن اضافه کنیم ، تاثیر بیشتری خواهند داشت.
بنابراین برای ریخته گری مقاطع زیاد که نیاز به سختی و آستمر زیاد دارند معمولاً از ترکیب ان عنصر استفاده می کنند . سیلیسیم صرف نظر از تاثیری که روی زمینه ی حاوی کربن دارد تاثیر زیادی روی سختی پذیری ندارد .

نرماله کردن چدن نشکن :
نرماله کردن (سرد کردن در هوا در جریان آستنیته کردن) به طور قابل توجهی می تواند باعث بهبود استحکام کششی شود.و امکان استفاده در ساخت چدن نشکن ASTM نوع 30-70-100 وجود دارد .
میکروساختار حاصل از نرماله کردن به ترکیب شیمیایی چدن و سرعت سرد کردن بستگی دارد سختی تحمیل شده به
وسیله ی ترکیب شیمیایی قطعه به موقعیت منطقه ی زمان - دمای دیاگرام CCT بستگی دارد .
سرعت سرد کردن به حجم قطعه ی ریختگی بستگی دارد ولی شاید بیشتر تحت تاثیر دما و جریان هوای اطراف قطعه ی در حال سرد شدن باشد .
اگر چدن حاوی مقدار زیادی سیلیسیم نباشد و دست کم حاوی مقدار مناسبی منگنز(یا بالاتر0.5 %-0.3%) باشد به طور کلی نرماله کردن ، ساختار پرلیت ظریف تولید خواهد کرد . قطعات سنگین در صورتی که نیاز به نرماله شدن داشته باشند برای بدست آوردن ساختاری کاملاً پرلیتی و سختی پذیری بیشتر بعداز نرماله کردن حاوی عناصر الیاژی از قبیل مولیبدن و نیکل و منگنز اضافی هستند . قطعا ت سبک چدن های آلیاژی ممکن است بعد از نرماله کردن حاوی ساختارمارتنزیتی یا بینیتی باشند
دمای نرماله کردن معمولاً بین870C-940C می باشد و زمان استاندارد نگهداری 1h برای هر اینچ ضخامت و نگهداری به مدت 1h به عنوان حداقل در این دما کافی است .برای چدن های حاوی عناصر آلیاژی به دلیل کاهش نفوذ کربن در آستنیت زمان بیشتری نیاز است به عنوان مثال قلع و آنتیموان برای گرافیت های کروی ، به طور موثری از حل شدن کربن در زمینه ی حاوی گرافیت کروی جلوگیری می کنند .
گاهی اوقات بعد از نرماله کردن ، قطعات را به منظور دست یافتن به سختی مورد نظر و حذف تنش های باقی مانده در اثر تفاوت سرعت سرد کردن در قسمتهای مختلف قطعه به دلیل اختلاف اندازه ی مقطع، قطعه ی ریختگی را تمپرمی کنند.
تمپر کردن قطعات بعد از نرماله کردن برای دستیابی به چقرمگی بالا و مقاومت به ضربه می باشد. تاثیر تمپر کردن در سختی و استحکام کششی به ترکیب شیمیایی چدن و میزان سختی بدست آمده از نرماله کردن بستگی دارد.
تمپر کردن شامل حرارت دادن مجدد تا دمای425C-650C و نگهداری در این دما به مدت1h برای هر اینچ ضخامت از مقطع می باشد . این دما برای دستیابی به مشخصات گوناگون در مدت بالای رنج معمول، متفاوت می باشد.

کونچ و تمپر کردن چدن داکتیل :
قطعا ت تجاری قبل از کونچ و تمپرکردن معمولاً در دمایی بین845C-925C آستنیته می شوند.برای به حداقل رساندن تنش و جلوگیری از ترک خوردن قطعه برای کونچ متوسط روغن ترجیحاً از روغن استفاده میشود ولی برای قطعات با اشکال ساده از آب یا آب نمک استفاده می شود و قطعا ت پیچیده را به منظور جلوگیری از ترک خوردن در حین کونچ، در روغن پیش گرم شده تا دمای 80C-100Cکونچ می کنند .
تاثیرکونچ کردن درآب مکعبی ازجنس چدن نشکن که تا دمای آستنیته گرم شده بود بدست آمدن سختی بالایی(55-75HRC) بوده است. دمای آستنیته کردن دراین مکعب بین 845C-870C بوده است . در دمایی بالاتر از 870C مقدار زمینه ی حاوی کربن (آستنیت) بیشتری بدست خواهد آمد به همین دلیل مقدار آستنیت بیشتری(پس از کونچ کردن) حفظ خواهد شد که در نتیجه ی این امر سختی کاهش پیدا می کند .
قطعا ت بعد از کونچ شدن باید تمپر شوند تا تنش حاصل از کونچ شدن آزاد گردد. سختی حاصله بعد از تمپر کردن به
عناصر آلیاژی موجود ، دمای تمپر کردن و به همان اندازه زمان تمپر کردن بستگی دارد . تمپر کردن در دمای 450C - 600C باعث کاهش سختی می شود که میزان آن به عناصر آلیاژی موجود،سختی اولیه وزمان تمپر بستگی دارد . سختی ویکرز چدن نشکن کونچ شده به وسیله ی دما و زمان تمپر کردن تغییر می کند .
تمپر کردن چدن نشکن از یک فرآیند دو مرحله ای تشکیل می شود. مرحله ی اول همانند فرآیند فولادها رسوب دادن کاربیدها است . مرحله ی دوم (معمولاً به وسیله ی کاهش سختی در زمان طولانی تر مشخص می شود) جوانه زنی و رشد گرافیت ثانویه که حاصل از مصرف شدن کاربیدها می باشد. کاهش سختی به همراه تشکیل گرافیت ثانویه همانند کاهش استحکام کششی و به همان اندازه کاهش استحکام خستگی می باشد. هر آلیاژی با در صد مشخص (عناصر) داری درجه حرارت تمپر مفید خواهد بود.

آستمپر کردن چدن نشکن:
هنگامی که استحکام مناسب به همراه انعطاف پذیری مورد نظر باشد، عملیات حرارتی کننده اجازه می دهد ساختار آستمپر شده از آستنیت و فریت تولید گردد. زمینه ی آستمپر شده باعث بهبود قابل توجه استحکام کششی و انعطاف پذیری می شود که در هر نوع چدن داکتیل ممکن می باشد. برای بدست آوردن آن خواص مطلوب نیاز است که به اندازه ی سطح مقطع ، زمان و درجه حرارت داده شده به قطعه در خلال آستنیته و آستمپرکردن دقت و توجه کافی شود .

اندازه سطح مقطع و عناصر آلیاژی :
با افزایش سطح مقطع سرعت کاهش درجه حرارت بین دمای آستنیته و دمای آستمپر کردن تغییر می کند . آستمپر کردن یا شامل کونچ کردن در روغن داغ 240C ، کونچ کردن به وسیله ی جریان نیتریت / نیترات،کونچ کردن توسط جریان هوا (فقط برای قطعات نازک یا قسمت های کوچک) و برای نوع ابزار کونچ کردن در حمام سرب.
به منظور جلوگیری از واکنش محصولات در درجه حرارت بالا (مثل پرلیت در مقاطع ضخیم) باید آنها را در حمام نمک کونچ کرد . سختی به وسیله ی کونچ کردن در آب یا افزودن عناصر آلیاژی (مثل مس ، نیکل ، منگنز ، یا مولیبدن ) که باعث تسهیل سختی پذیری پرلیت می شوند . این نکته مهم است مه بدانیم عناصر فوق باعث به وجود آمدن جدایش در هنگام انجماد می شوند که این امر برای قابلیت آستمپر شدن و در نتیجه ی آن برای خواص مکانیکی مضر خواهد بود. انعطاف پذیری و مقاومت به ضربه پارامترهایی هستند که شدیداً تحت تاثیر قرار می گیرند .
منگنز و مولیبدن بیشترین تاثیر را در سختی پذیری پرلیت دارند اما به منظور افزایش آهن یا تعدیل کاربیدها همیشه موجب سگرگاسیون و سرد شدن ناحیه ی بین سلولی در قطعه می شوند . در صورتیکه مس و نیکلبه همان اندازه تاثیری در سختی
پذیری ندارند ولی باعث جدا شدن گرافیت کروی در زمینه میشوند و از به وجود آمدن کاربیدهای مضرجلوگیری می کنند. ترکیبی از این عناصر به اندازه ی مساوی به دلیل تاثیر آنها در سختی پذیری به قطعه افزوده می شود.

دما و زمان آستنیته کردن :
معمولاً شکل شماتیک دیاگرام نشان می دهد که با افزایش دمای استنیته کردن ، زمینه ی حاوی کربن (آستنیت) نیز افزایش می یابد. زمینه ی فعلی حاوی کربن ، به شکل مخلوط شدن عناصر موجود در زمینه ، مقدار آنها و موقعیت آنها در زمینه بستگی دارد (سگرگاسیون) .
مهمترین عامل تعیین کننده در زمینه ی حاوی کربن در چدن داکتیل سیلیسیم موجود در آن است ، با افزایش سیلیسیم برای دمای آستنیته ی معیین مقدار کربن موجود در زمینه کاهش می یابد. دمای آستنیته بین845C-925C معمولاً مناسب است و زمان آستنیته کردن برای کربن گیری مجدد تمام زمینه تقریباً 2 ساعت کافی می باشد.
دمای استنیته کردن کاملاً تحت تاثیر مقدار کربن موجود در زمینه می باشد که اثر مهم آن در سختی پذیری می باشد. دمای آستنیته ی بالا و مقدار کربن بالا باعث افزایش سختی پذیری می شود . که باعث کاهش سرعت دگرگونی آستنیت همدما می شود .

زمان و دمای آستپمر کردن :
دمای آستمپر کردن اولین پارامتر تعیین کننده ی میکروساختار نهایی در قطعه و در نتیجه ی آن سختی و استحکام محصول آستمر شده است . با افزایش دمای آستمپر کردن ، سختی و مقاومت به ضربه ی متفاوتی خواهیم داشت.
دستیابی به حداکثر انعطاف پذیری در دمای معیین آستمپر کردن ، تابع حساس زمان می باشد . افزایش اولیه ی ازیاد طول نسبی در مرحله ی (1) رخ می دهد و پیشرفت ازیاد طول نسبی در مرحله ی نهایی اتفاق می افتد که در آن نقطه ی شکست
آستنیت حداکثر می باشد . آستمپر کردن مجدد فقط به منظور کاهش انعطاف پذیری در مرحله ی (2)واکنش که در نتیجه ی تجزیه ی ساختار به تعادل بینیت می باشد . زمان آستمپر کردن از 4-1 ساعت متفاوت می باشد


دسته بندی :

آلیاژ آلومینیم-مس

آلیاژهای آلومینیوم حاوی مس به عنوان عنصر اصلی آلیاژی اولین آلیاژهایی بودند که برای ساخت قطعات ریختگری آلومینیوم مورد استفاده قرار گرفتند ، اگرچه اغلب این آلیاژها امروزه مورد استفاده ندارند . اغلب ترکیبات موجود حاوی عناصر دیگر آلیاژی هستند.این گروه آلیاژی ممکن است مشکلات و مسایل ریختگری مانند پارگی داغ ایجاد کنند . همچنین برای این آلیاژها لازم است تغذیه کافی گذاشته شود تا از محصول بی عیب اطمینان حاصل شود . این آلیاژها به عملیات حرارتی پیرسختی عکس العمل خوبی نشان می دهند.

آلیاژهای بر پایه سیستم آلومینیوم – مس

آلیاژهای آلومینیوم حاوی مس به عنوان عنصر اصلی آلیاژی اولین آلیاژهایی بودند که برای ساخت قطعات ریختگری آلومینیوم مورد استفاده قرار گرفتند ، اگرچه اغلب این آلیاژها امروزه مورد استفاده ندارند . اغلب ترکیبات موجود حاوی عناصر دیگر آلیاژی هستند.این گروه آلیاژی ممکن است مشکلات و مسایل ریختگری مانند پارگی داغ ایجاد کنند . همچنین برای این آلیاژها لازم است تغذیه کافی گذاشته شود تا از محصول بی عیب اطمینان حاصل شود . این آلیاژها به عملیات حرارتی پیرسختی عکس العمل خوبی نشان می دهند.

ترکیبات مختلفی در حال حاضر در دسترس است که در دماهای بالا خواصی بهتر از کلیه سایر آلیاژهای ریختگری آلومینیوم نشان می دهند . مثالهایی در این مورد آلیاژ (Al-10 Cu-3 Si- ./3 Mg) 238 که برای ریختگی در قالب های دایمی استفاده می شوند و آلیاژ (Al-4 Cu-2 Ni-1/5 Mg) 242 سالها برای ساخت پیستون دیزل و سرسیلندر هوای خنک شونده موتور های هواپیما بکار می رود . هر یک از این آلیاژها دارای ترکیبی از رسوب سختی به همراه ذرات پراکنده ناشی از ترکیبات بین فلزی هستند که در دماهای تا حدود 250 درجه سانتی گراد باعث پایداری استحکام و پیر سختی می شوند.

تازه ترین این آلیاژها Al-Cu-Ag-Mg است که مخصوصا به پیر سختی عکس العمل زیادی نشان می دهد . این آلیاژ که KO-1 یا در ایالات متحده آلیاژ 201 نامیده می شود دارای ترکیب اسمی Al-4.7 Cu-./7 Ag-./3 Mg است و یک آلیاژ مشابه هم در فرانسه وجود دارد که Avior نامیده می شود که این آلیاژحاوی 3/1 % روی نیز است . حساسیت این آلیاژ به پیر سختی ناشی از این امر است که نقره به طور کامل فرایند رسوب گذاری را که در سیستم Al-Cu-Mg انتظار می رود تغییر می دهد.این تغییر فرایند باعث ایجاد رسوبات بسیار زیاد ، به شکل اورتورومبیک که از فاز 4 وجهی (CuAl2)θ می شود که صفحات هم بسته به جای صفحات {100}  که در تصویر زیر نشان داده شده است بر روی صفحات {111} زمینه تشکیل می گردند .

 

با استفاده از روش ریختگری کیفیت بالا خواص تضمین شده ، تنش سیلان 345 مگا پاسکال و استحکام کششی 4.15 مگا پاسکال با حداقل تغییر طول %5 در تعداد زیادی از قطعات ریختگری عملیات حرارتی شده در حالت T6 حاصل شده است ، و حتی تنش سیلان 480 مگا پاسکال و استحکام کششی 550 مگا پاسکال به همراه 10% تغییر طول نیز دیده شده است . این خواص کششی خیلی بهتر از آنچه که برای سایر آلیاژهای آلومینیوم قابل حصول است بوده ، و مقادیر آنها قابل مقایسه با آلیاژهای کارپذیر پر استحکام است . این آلیاژها ممکن است در حالت T6 به ترک حاصل از خوردگی تنشی مستعد باشند ولی با عملیات حرارتی T73  این مقاومت به شدت بهبود می یابد . اگر چه افزودن نقره پر هزینه است ، ولی اگر این آلیاژها به جایگزینی قطعات کار شده منجر شوند در آن صورت اقتصادی خواهند بود .

                       

آلیاژ Al-Cu(گروه 2XXX)

این گروه از آلیاژها جز آلیاژهای عملیات حرارتی پذیر می باشند.

گرچه تغییرات پیچیده ای که در خلال پیر کردن آلیاژهای Al – Cu انجام می گیرد خیلی بیشتر از سایر سیستم های مورد مطالعه قرار گرفته است ،ولی در عمل تنها چند آلیاژ تجاری بر پایه سیستم دو جزیی موجود است.آلیاژ (Al-5.5 Cu) 2011 که به خاطر قابلیت ماشین کاری خوب مورد استفاده قرار می گیرد حاوی مقادیر کمی عناصر نامحلول سرب و بیسموت است که در ساختار میکروسکوپی تولید ذرات مجزایی می کنند که به تشکیل براده کمک می نماید . آلیاژ 2025 برای قطعات آهنگری شده مورد استفاده قرار می گیرد ، اگرچه امروزه آلیاژ  (Al-6.3 Cu) 2219 که دارای ترکیب مناسب تری از خواص است و به صورت ورق ، صفحه و قطعات اکسترود شده نیز کاربرد دارد جای آنرا گرفته است . آلیاژ2219 دارای خواص کششی نسبتا بالا در دمای محیط به همراه استحکام خوب خزشی در دمای بالا و چقرمگی زیاد در دماهای بسیار پایین است . بهعلاوه این آلیاژ قابل جوشکاری بوده و برای مخازن سوخت برای نگهداری گازهای مایع شده که به عنوان رانش موشک ها وسفینه های فضایی به کار می روند مورد استفاده قرار می گیرند . عکس العمل این آلیاژ به پیر سختی ، در اثر کرنش سختی قبل از پیر کردن مصنوعی(T8)شدت می یابد و استحکام تسلیم آن ممکن است در مقایسه با حالت T6 تا 35% افزایش یابد.

بر پایه آلیاژ 2219 آلیاژ دیگری در ایالات متحده ساخته شده است که دارای 10-15% افزایش استحکام کششی است . این آلیاژ را 2021 نامگذاری کرده اند و به صورت صفحات نوردی دارای استحکام تسلیم معادلMpa 435 ، استحکام کششی MPa505 و درصد ازدیاد طول 9% است که در دماهای پایین نیز هیچگونه کاهش ج.ش پذیری یا چقرمگی نیز گزارش نشده است . این افزایش استحکام از طریق افزودن مقدار جزیی یا نا چیز عناصر آلیاژی./15% Cd ، ./15قلع که دارای تاثیر ریزکنندگی دانه های رسوبات واسطه که در اثر پیر شدن در محدوده دماهای متوسط (130-200 درجه سانتی گراد)ایجاد می شوند حاصل می گردد . البته سمی بودن کادمیم ایجاب مب کند که عملیات ریختگری تحت شراسط کاملا کنترل شده انجام گیرد.

نقش عناصر جزیی در تغییرات رسوب گذاری در یک آلیاژ پیر شده بر مبنای آلومینیوم – مس برای بهبود استحکام در دمای محیط و دمای بالا برای یک آلیاژ تحقیقاتی جدید مطالعه شده است . این آلیاژ ، بر پایه 2219 است که در آن مقادیر مشخصی نقره (3/.-4/. %) و منیزیم (./5 - ./4 % ) اضافه شده است تا فرایند رسوب گذاری تغییر نماید ، یک ترکیب نوعی از این آلیاژ Al-6.3 CU-./4 Mg-./3 Ag-./3 Mn-./15 Zr است.به جای فاز ̋ θ و ́θ که در دماهای بالا در آلیاژ 2219 بر روی صفحات {100}ظاهر می شوند ، در این آلیاژ نوعی رسوب جدید به وجود می آید که به صورت ریز پخش شده و تشکیل ورقه های خیلی نازک بر روی صفحات{111} می دهد(شکل بالا) . این فاز که امگا(Ω) نامیده می شود و ظاهرا دارای ساختمان اورتورومبیک می باشد ، در دماهای تا 200 درجه خیلی پایدار به نظر می رسد . به علاوه بررسی شبکه ای با میکروسکوپ الکترونی نشان می دهد که این فاز با فاز زمینه در انتهای ورقه رسوبی همبسته بوده و به این علت است که وقتی آلیاژ تا دماهای بالا حرارت داده شود در اثر مکانیزم Ostwald Ripeninh سرعت رشد دانه های آن پایین است.

این آلیاژ در حالت T6 (پیر شده در 195 درجه سانتی گراد)دارای تنش سیلان دمای محیط تا Mpa 520 است که با تنش سیلان معادل 290 مگا پاسکال آلیاژ 2219 قابل مقایسه نیست . اندازگیری های اولیه خواص خزشی این آلیاژ ، گسیختگی تنش در 180 درجه خیلی بهتر از آلیاژ 2219 و سایر آلیاژ های گروه 2XXX را نشان می دهد.این آلیاژ تحقیقاتی نیز مانند آلیاژ 2219 جوش پذیر است.

شرح آزمایش:

در ابتدا شمشی از آلیاژ Al – 4% Cu را گرفته و آنرا با ترازو وزن کردیم ، که وزن آن حدودا 275 گرم(یعنی 275/. کیلو گرم) شد.سپس آلیاژ مورد نظر را در کوره قرار دادیم تا آلیاژ ذوب گردد.

سپس باید مقدار عنصر آلیاژی مصرفی که از نوع مس بود را محاسبه می کردیم ، با توجه به اینکه مقدار عنصر آلیاژی در آلیاژ مورد نظر %5 بود برای رساندن مقدار مس به 5 % باید مقداری قراضه مسی به مذاب می افزودیم.

پس باید به مذاب مقدار 1% از عنصر آلیاژی را اضافه می کردیم و چون این قراضه ها معمولا تلفاتی نیز دارند 5/. % مس را به همین خاطر اضافه کردیم(در مجموع 1.5% مس به مذاب اضافه گردد).

با استفاده از اره و انبر شروع به بریدن قراضه مسی کردیم تا مقدار مناسب حاصل گردید.

سپس به سراغ ساختن قالب رفتیم و شروع به ساخت قالب روباز با نمونه های موجود کردیم.پس از اتمام ساخت قالب ، فورا قراضه مسی لازم را بر داشته و به مذاب افزودیم ، مذاب را از کوره در آورده و در قالب نمونه ریختیم . بعد از سرد شدن مذاب آن قطعه را بر داشته و به آزمایشگاه بردیم.

 

آماده سازی نمونه:

ابتدا نمونه موردنظر را بریده و سپس سوهان می‌زنیم تا سطح آن صاف شود و بعد از آن بوسیله سمباده كه از 240 تا 1200 شماره‌گذاری شده آنرا سمباده‌ می‌زنیم تا سطح آن كاملاً صاف و صیقلی شود.

 

پولیش كردن:

حساسترین و مهمترین مراحل آماده‌سازی برای آزمایش متالوگرافی، پولیش كردن است. عمل پولیش كردن توسط دستگاه پولیش كه دارای یك صفحه‌ی صاف و گرد می‌باشد و توسط الكترو موتور چرخه‌ی آن انجام می‌شود، روی صفحه‌ی گردان آن پارچه‌ی ماهوت كشیده شده است. عمل پولیش با مواد ساینده كه اكسید منیزیم یا آلومینیوم برای آلومینیوم است استفاده می‌كنیم. تعداد دور صفحه‌ی دوار معمولاً بین 300 تا 500 دور بر دقیقه است. در هنگام پولیش كردن حتماً آب باید از بالا به مقدار مناسب به وسط صفحه‌ی پولیش ریخته شود تا براده‌های ایجاد شده را با خود ببرد. فشار قطعه برروی صفحه‌ی پولیش باید مناسب باشد. اگر فشار زیاد باشد، صفحه‌ی پولیش باعث خط انداختن روی قطعه می‌گردد.


دسته بندی :

چدن سفید

چدن سفید: چدنی که در آن تمامی کربن موجود به حالت ترکیب و به صورت سمنتیت وجود دارد. ساختمان چدن سفید به صورت زیر است: 1-چدن سفید یوتکتیکی لدبوریت(P+Fe3C) 2-چدن سفید هیپویوتکتیکی پرلیت + لدبوریت(Ld+P) 3-چدن هیپویوتکتیکی سمنتیت + لدبوریت(Ld+Fe3C) سطح مقطع چدن سفید به صورت سیاه و سفید است ، نواحی سیاه رنگ پرلیت و سفیدها لدبوریت یوتکتیکی می باشند.این چدن چندان مصارف صنعتی نداشته و اکثرا برای ساخت چدن مالیبل از آن استفاده می شود. چدن سفید محتوی کربن و سیلسیم کمی بوده و لذا دارای سیالیت کم ، تمایل به انقباض و ترک های حرارتی گرم و سرد زیاد می باشد. چدن سفید: چدنی که در آن تمامی کربن موجود به حالت ترکیب و به صورت سمنتیت وجود دارد. ساختمان چدن سفید به صورت زیر است: 1-چدن سفید یوتکتیکی لدبوریت(P+Fe3C) 2-چدن سفید هیپویوتکتیکی پرلیت + لدبوریت(Ld+P) 3-چدن هیپویوتکتیکی سمنتیت + لدبوریت(Ld+Fe3C) سطح مقطع چدن سفید به صورت سیاه و سفید است ، نواحی سیاه رنگ پرلیت و سفیدها لدبوریت یوتکتیکی می باشند.این چدن چندان مصارف صنعتی نداشته و اکثرا برای ساخت چدن مالیبل از آن استفاده می شود. چدن سفید محتوی کربن و سیلسیم کمی بوده و لذا دارای سیالیت کم ، تمایل به انقباض و ترک های حرارتی گرم و سرد زیاد می باشد.علاوه بر آن قطعات ریختگی چدن سفید در جریان انجماد و سرد شدن دارای تنش های پسماند زیادی هستند. استفاده از تغذیه و مبرد در چدن های سفید به خصوص در قسمت های ضخیم قطعه به منظور پرهیز از ایجاد حفره های ریز و درشت انقباض ضروری است. اگر چدن سفید را آلیاژی کنیم مبدل به یکی از پرمصرفترین چدن های خانواده چدن های آلیاژی می شود.که عمدتا به عنوان قطعات مقاوم در برابر سایش و همچنین به عنوان قطعات مقاوم در مقابل اکسیداسیون و حرارت کابرد دارد. چدن های سفید غیر آلیاژی و کم آلیاژی که کاربید آنها از نوع سمانتیت است طی گذشت زمان های طولانی به دلیل مقاومت آنها در مقابل سایش ( که از سخت بودن فاز سمانتیت ناشی می شود)مورد استفاده قرار گرفته و هم اکنون نیز جهت پاره ای از مصارف محدود صنعتی کاربرد دارد. در حالی که در شرایط کاری شدید سایش و ضربه عملکرد آنها محدود نیست. محدودیت آنها مربوط به شبکه پیوسته کاربید آهن می شود که دانه های آستنیت را در خود احاطه کرده است و باعث تردی زیاد آنها می شود. تولید چدن سفید در مقاطع ضخیم با مشکل روبرو است زیرا امکان به وجود آمدن گرافیت آزاد و کاهش مقاومت به سایش وجود دارد. به وسیله آلیاژی کردن می توان سمنتیت ، یا همان کاربید آهن را در چدن های سفید با کاربید های دیگر جایگزین کرد. زمانی که یک عنصر کاربیدزا در حد معینی وارد آلیاژ شود ، سمنتیت را ناپایدار نموده ، به گونه ای که با کاربید های دیگر جایگزین می شود. به این طریق این امکان وجود دارد که چدن های سفیدی را تولید نمود که فاز کاربید آنها از سمانتیت سخت تر بوده و از نظر ساختاری نیز خواص مکانیکی بهتری را حاصل نماید. شکل و نحوه توزیع کاربید ها را می توان با توجه به میزان کربن معادل تغییر کند. عواملی که روی خواص مکانیکی چدن های سفید از جمله سختی ، ضربه پذیری اثر می گذارند عبارت اند از: نوع کاربید - شکل و اندازه کاربیدها – اندازه دانه – ساختار زمینه نوع کاربید : به عنوان مثال کاربید هایی از نوع M7C3 نسبت به کاربید های M3C ( هر دو ناشی از اضافه کردن عنصر کروم ) از سختی بیشتری بر خوردار بوده ، ضمن آنکه ساختمان ظریف تری را ایجاد می کند که منجر به ضربه پذیری بهتری می شود . در چدن های سفید بدون آلیاژ که کاربید ها از نوع Fe3C هستند و در چدن های سفید کم آلیاژ با کروم حدود %3 کاربید هایی از نوع M3C و از %3 تا حدود %10 مخلوط M3C ، M7C3 و در حوالی % 10 کاملا کاربید ها به نوع M7C3 تغییر می یابند. کاربید های M3C عموما دارای شبکه پیوسته و خشن هستند که هم سختی پایین تری از M7C3 دارند و هم ضربه پذیری آنها کمتر است. شکل و اندازه کاربید ها : هر قدر اندازه دانه ها کوچکتر ، باشد مقاومت به ضربه را بهبود می بخشند . اصولا ریز بودن کاربید ها و یکنواختی آنها نیز خواص ضربه پذیری را بهتر می کند . لذا استفاده از روش های انجماد سریع و اضافه کردن پاره ای مواد تلقیحی نظیر فرو تیتانیم و یا فرو کروم کم کربن به ذوب می توان ساختاری ظریف تر و یکنواخت تر را ترغیب نماید. ساختار زمینه : جهت حصول بهترین مقاومت در مقابل سایش ، بهتر ایت زمینه مارتنزیتی به دست بیاید . در هنگام سرد کردن تبدیل آستنیت به پرلیت صورت گرفته و حضور پرلیت در جوار کاربید به شدت از مقاومت فرسایشی قطعه می کاهد و کروم به تنهایی برای جلوگیری از این تحول کافی نمی باشد ، لذا از عناصر آلیاژی نظیر مولیبدن ، مس ، نیکل جهت کاهش سرعت بحرانی سرد شدن می توان استفاده نمود.همچنین به دلیل حلالیت زیاد کربن در آستنیت امکان باقی ماندن مقداری آستنیت باقی مانده تا درجه حرارت محیط وجود دارد. در جایی که مقاومت سایشی مطرح است و ضربه وجود ندارد ، آستنیت باقی مانده نامطلوب تلقی می شود ، زیرا سختی را کاهش می دهد ؛ اما در مواردی که سایش توام با ضربه شدید وجود دارد مقادیری آستنیت باقی مانده مجاز است. شرح آزمایش : در آزمایش فوق ابتدا از مدل گوه ای شکل (دارای سطح مقطعی از نازک به ضخیم ) از قالب ماسه ای تهیه گردید و پس از ذوب ریزی قطعه تهیه شده از قالب خارج گردید و تا دمای محیط سریعا سرد گردید . قطعه مذکور از قسمت طولی برش خورد و از سه ناحیه با ضخامت های مختلف مورد عملیات متالوگرافی قرار گرفت که نتایج آن در ادامه مذکور است. در قسمت1ما دارای گرافیت بین دندریتی هستیم و در قسمت2دارای گرافیت نوع A و در قسمت3دارای گرافیت گل بوته ای هستیم.(ما از نایتال و بزرگنمایی 100 استفاده کردیم) و این در حالی است که ما چدن سفید داریم و می دانیم که در چدن سفید هیچگونه گرافیتی را نداریم ، پس این گرافیت های موجود در چدن ما ممکن است به خاطر این باشد که بعد از ریختگری ما قطعه را سریعا در آب سرد نکردیم.که در این صورت کربن ها فرصت یافته اند تا به شکل گرافیت در آیند . در ضمن نتیجه سختی سنجی نمونه چدن سفید با راکول C به قرار زیر است: در قسمت نوک سختی نمونه 49.9 می باشد . و قسمت وسط نمونه سختی 47.3 را به ما داد.همچنین نتیجه سختی سنجی انتهای قطعه 45.53 می باشد.

دسته بندی :

اچ کردن

اگر یک نمونه فلزی پس از آماده سازی زیر میکروسکوپ نوری قرار داده شود ، انعکاس و بازتابش نور به گونه ای خواهد بود که رویت ریزساختار ، که هدف اصلی متالوگرافی است، امکان پذیر نمی گردد. به همین دلیل ، جهت ایجاد یک زمینه قابل رویت از ریزساختار نمونه ، عمل اچ کردن (به شیوه های گوناگون ) انجام می شود. شایان ذکر است که اگر منظور مطالعه مواردی مانند ترک مویی ، تخلخل ، حفره ، آخال غیر فلزی و برخی فازهای خاص (نظیر گرافیت در چدن خاکستری و سرب در برنج سرب دار) باشد ، اچ کردن نمونه آماده شده ضرورت ندارد.اچ کردن به مفهوم ایجاد خوردگی بسیار ضعیف در قسمت های ناپایدار سطح نمونه آماده شده و پرداخت شده است. در بسیاری از موارد ، نمونه پرداخت شده ریزساختار خود را نمایش نمی دهد. زیرا نورهای معمولی به صورت یکسان و متحد منعکس می شوند. از آنجایی که اختلاف های ناچیز در انعکاس پذیری توسط چشم انسان قابل تشخیص نیست ، روشهایی برای تصویرگیری از طریق تباین نوری مورد نیاز می باشد. اگرچه این روشها به نام اچ کردن معروف هستند ، اما همیشه اچ کردن مرتبط با انتخاب محلول های شیمیایی خاص برای ساختارهای مختلف نمی باشد. این امر می تواند با استفاده از روشهای نوری ، شیمیایی ، الکتروشیمیایی و یا فیزیکی به انجام برسد. اچ کردن روشهای گوناگونی دارد که هر یک برای ساختارها و مواد مختلف مفاهیم متفاوتی را در بر خواهد داشت. در واقع در هر شیوه ای برای یک ماده خاص می توان ظرایفی را به کار گرفت که به بهترین و مطلوب ترین نتایج دست یافت. (رایج ترین محلول مورد استفاده برای فولاد های نایتال نام دارد که محتوی محلول 2% اسید نیتریک در الکل است )

انواع روشهای اچ کردن :

اچ نوری  (Optical Etching) :

اچ نوری بر مبنای استفاده از روشهای خاص روشن سازی و بر اساس اصول روشن سازی کوهلر(Kohler) بنا گردیده است. این روشها که شامل میدان تاریک ، نور قطبی ، تباین فازی ، تباین تداخلی و... می باشند ، در اغلب میکروسکوپهای تجاری موجود بوده و یا به سادگی قابل نصب و به کارگیری هستند.روش اچ کردن نوری یک مزت قابل توجه نسبت به سایر روشهایی که موجب تغییرات در سطح نمونه می شوند ، دارد و آن مبتنی بر این نکته است که روشهای فیزیکی و شیمیایی اچ کردن نیازمند زمان قابل توجهی است و همواره خطر ایجاد قسمت هایی که نتوان در مورد آنها تفسیر صحیحی ارایه نمود وجود دارد.

اچ الکتروشیمیایی    ((Electrochemica (Chemical Etching) :

 در طول این فرآیند نمونه های فلزی ، عملیات اکسیداسیون و احیا اتفاق می افتد.همه فلزات در تماس با محلول ها تمایل به یونیزه شدن از طریق آزاد کردن الکترون دارند. کمیتی که می تواند مشخص کننده انجام این تحول باشد ، پتانسیل الکتروشیمیایی است. این کمیت با مقایسه پتانسیل فلز نسبت به پتانسیل استاندارد یک الکترود مرجع سنجیده و اندازه گیری می شود.فهرست عناصر زیر ترتیب قرارگرفتن فلزات گوناگون را بر حسب سری الکتروموتیو آنها نشان می دهد:Li , Na , K , Ca , Ba , Be , Mg , Al , Mn , Zn , Cr , Cd , Tl ,  Au , Pt , Co , Ni , Pb , Fe , H , Sn , Sb , Bi , As , Cu , Ag, Hg عناصر فوق الذکر براساس میل ترکیبی با الکترون مرتب شده اند. با حرکت از چپ به راست ، قدرت اکسید کنندگی (یا احیا شوندگی) افزایش یافته ، قدرت احیا کنندگی (یا اکسید شوندگی) کاهش می یابد. در این ردیف ، عناصر قبل از هیدروژن ، با اسید خورده شده و2 Hآزاد می کنند. بالعکس ، عناصر بعد از هیدروژن بدون عامل اکسید کننده خورده نشده و با اسید و آب ، هیدروژن تولید نمی نمایند. بنابراین به دلیل وجود پتانسیل های شیمیایی مختلف برای عناصر و وجود عناصر و آلیاژهای گوناگون در یک ساختار ، سرعت خوردگی ریزساختار در مناطق مختلف ، متفاوت بوده ، اچ کردن در محلول های گوناگون ، نتایج متنوعی را به همراه خواهد داشت. وجود اختلاف پتانسیل در مناطق مختلف یک ساختار ، باعث ایجاد منطقه های کوچک آندی – کاتدی می شود. گاهی این سلولهای الکتروشیمیایی کوچک ناشی از اختلاف ترکیب نیستند ، بلکه از بی قاعدگی ساختار بلوری ناشی می شوند. از جمله این نا همگنی های ساختاری و عدم مساوات ها می توان به موارد زیر اشاره کرد:

نا همگنی های حاصل از تغییر شکل که دارای مقاومت به خوردگی کمتری نسبت به قسمت ها تغییر شکل نیافته هستند.

نا همواری در اثر تشکیل لایه های اکسید. (نواحی صیقلی و مناطق پرداخت شده مقاومت کمتری دارند.)

افت و خیز غلظت در الکترولیت. (غلظت کمتر دارای مقاومت کمتری است.)

تفاوت در سرعت حرکت الکترولیت. (سرعت گردش بالاتر ، مقاومت خوردگی را کاهش می دهد.)

تفاوت در میزان اکسیژن الکترولیت. محلول های گازدار مقاوم ترند.

تفاوت در شدت تابش نور که منجر به تغیر پتانسیل می گردد.

به علت وجود اختلاف پتانسیل بین ریزساختارها ، انحلال سطح با سرعت های مختلف صورت می گیرد و در نتیجه تباین ، تضاد و اختلاف سطح ایجاد می شود. ایجاد این اختلاف ، تنها با انحلال مواد نیست ، بلکه با روشهایی چون اچ کردن رسوبی Precipitation Etching)) و رنگ آمیزی حرارتی (Heat Tinting) نیز می توان این مهم را به انجام رساند.

اچ کردن رسوبی :

ماده ابتدا حل شده و با مقدار معین محلول اچ واکنش می دهد تا مواد نا محلولی را تشکیل دهد. این مواد و ترکیبات نامحلول ، به طور انتخابی بر روی سطح نمونه رسوب کرده ، رنگ های تداخلی یا لایه های ضخیم از رنگ های مشخصی را به وجود می آورند.

اچ کردن به روش رنگ آمیزی حرارتی :

با اعمال شرایط معین دمایی و فشاری خاص صورت می گیرد. در این شیوه ، سطح بر اساس خواص گوناگون ریزساختاری با سرعت های مختلف اکسید شده و رنگ های متنوعی اجاد می نماید.محدوده وسیعی از محلول های اچ در دسترس هستند که شامل اسیدها ، بازها ، محلول های خنثی ، مخلوطی از محلول ها ، نمکهای مذاب و گازها می باشند. اغلب این فرمول ها به صورت تجربی بدست آمده ، ترکیب و شیوه به کارگیری هر یک می تواند تغییر یافته یا بهبود پیدا کند. سرعت خوردگی عمدتا با درجه تجزیه محلول اچ و هدایت الکترکی آن تعیین می گردد که هر یک از این موارد می تواند با افزودن مواد افزودنی شیمیایی تحت کنترل درآید. دامنه زمانی اچ کردن از چند ثانیه تا چند ساعت متغیر است اما هیچ دستورالعمل خاصی در این زمینه وجود ندارد. زیرا سطح نمونه و کدر شدن آن تعین کننده زمان اچ هستند. زمان و دمای اچ به هم وابسته اند. با افزایش دما ، زمان اچ کردن کاهش می یابد. اگر چه افزایش دما توصیه نمی شود. زیرا هنگامی که سرعت خوردگی بالاست ، تباین غیر منتظره ای ایجاد می نماید.

اغلب عملیات اچ در دمای محیط صورت می گیرد.در فرآیند اچ کردن ، خصوصا اچ شیمیایی ، خطاهای فراوانی امکان بروز دارند. این خطاها اغلب به تفسیر نا درست ریزساختار منجر می شوند. به عنوان مثال ، رسوب محلول اچ یا محلول شوینده بر روی سطح می تواند به عنوان یک فاز اضافی تفسیر شود.


دسته بندی :

میکروسکوپ پیمایشگر تونلی


در امر فناوری نانو ابزار و تجهیزات نقش مهمی را ایفا می کنند چرا که بدون ابزار مسلما فعالیت در حوزه نانو امری غیرممکن است. در گذشته به علت ضعف فناوری و نیز نبودن وسایل اندازه گیری و آنالیز بسیاری از محققان حتی نمی دانستند که تحقیقی که انجام می دهند در حوزه فناوری نانو است. مثالی از این مورد را می توان در شیشه های رنگی کلیسا ها پیدا کرد که مربوط به چند صد سال قبل است و امروزه محققان با کمک ابزارهای بررسی و آنالیز به این امر پی برده اند که در ساخت این شیشه ها فناوری نانو بکار رفته است.
در این سری از مقالات سعی می شود تا تجهیزات و ابزارهای مورد استفاده در این فناوری برای محققان و علاقمندان به تحقیق در این حوزه معرفی شود. در این مقاله به معرفی میکروسکوپ پیمایشگر تونلی می‌پردازیم که جدیدا توسط آقای دکتر صابر در مرکز تحقیقات علوم و تکنولوژی در پزشکی ساخته و ارائه شده است.

بانك اطلاعات مواد
شکل 1) نمایی از NAMA-STM ساخته شود توسط محقق ایرانی

میکروسکوپ پیمایشگر تونلی (Scanning Tunneling Microscopy) که به طور اختصار به آن STM گفته می شود برای بررسی و تصویربرداری از سطوح صلب و فلزی که الکتریسیته را عبور می دهند بکار می رود. این میکروسکوپ نتیجه تحقیقات Russell Young و همکارانش در فاصله 1965-1971 در مرکز تحقیقات ملی است.
در این میکروسکوپ از نوعی جریان الکتریسیته (جریان تونلی) استفاده می شود که علت نامگذاری آن است. زمانی که نوک میکروسکوپ در مجاورت سطح رسانا و در فاصله یک نانومتری آن حرکت می‌کند جریان برقرار می شود (شکل 2).


شکل 2) نوک قلم STM آنقدر تیز و باریک است که به راحتی در بین اتم ها بالا و پایین می رود

نوک قلم بر روی یک تیوب فیزوالکتریک قرار دارد. زمانی که ولتاژ به الکترودهای متصل به این تیوب داده می شود با اندک تنظیماتی می توان جریان ثابت تونلی ایجاد کرد و در هنگام اسکن، نوک را در فاصله ثابتی از نمونه سطح قرار داد. حرکت تیوب فیزوالکتریک ثبت می شود و به صورت یک تصویر به نمایش در می آید. با استفاده از میکروسکوپ پیمایشگر تونلی می توان اتمهای منفرد روی سطح نمونه را به صورت سه بعدی مشاهده کرد. از این تکنیک برای اجسامی مانند مواد رسانا و مولکول های DNA استفاده می شود (شکل3).



بانك اطلاعات مواد
شکل 3) نمای شماتیک از نحوه کارکرد STM

مزیت این نوع تصویربرداری این است که نیاز نیست با کار در خلاء انجام شود (در اکثر موارد از خلاء برای جلوگیری از آلوده شده نمونه استفاده می شود) بلکه می توان از آن برای آنالیز اجسام در هوا یا مایعات نیز استفاده کرد. شکل 4 نمایی از سطح فلز مس را نشان می دهد که توسط M. F. Crommie, C. P. Lutz, and D. M. Eigler در مرکز تحقیقات IBM گرفته شده است. این محققان توانستند با وضعیت دهی به اتمها از نمونه تصویربرداری کردند.


شکل 4) تصویر گرفته شده از سطح نمونه مس در IBM


دسته بندی :

تاثیر گوگرد و سلنیم

 یکشنبه دهم آذر 1387 10:35

گوگرد ماده بی بو و بدون مزه است که در طبیعت بیشتر به صورت ماده جامد زرد رنگ است که البته کانی های سولفیدی و سولفاتی نیز به وفور دیده می شوند.

گوگرد یکی از عناصر اصلی در ساختمان سلول زنده است.گوگرد یک منبع غذایی شیمیایی برای برخی از ارگان ها می تواند باشد:بعضی از باکتری ها از سولفید هیدروژن بجای آب به عنوان الکترون ده در فرآیندهای شبیه فوتوسنتز استفاده می کنند.گوگرد غیرآلی بخشی از کلاسترهای آهن-گوگرد را تشکیل می دهد و گوگرد یک لیگاند(Ligand) اتصالی در محل CuA در اکسیدایز سیتوکروم سی می باشد که این آخری ماده اصلی در استفاده از اکسیژن درتمام زندگی هوازی می باشد.

در نباتات و حیوانات،سیستئن (cysteine) آمینو اسید و متونین(Methionine) شامل گوگرد می باشند.هوموسیستئن و تاورین(Taurine) از انواع اسیدهای گوگرد داری هستند که ساختار مشابهی داشته ولی به وسیله DNA کد گذاری نمی شوند و بخشی از ساختار اولیه پروتئین محسوب نمی شوند.

پیوندهای دی سولفیدی (S-S) که بین اجزای سیستئن در زنجیرهای پپتید تشکیل می شوند،در ساختار پروتئین بسیار مهم هستند.این پیوندهای کووالانت قوی بین زنجیرهای پپتید باعث می شوند که پروتئین ها از چقرمگی و جهندگی بالایی برخوردار باشد.به عنوان مثال،استحکام بالای پرها و مو به دلیل مقدار بالای اتصال S-S و هم چنین مقدار زیاد سیستئن و گوگرد است.

گوگرد از زمانهای قدیم مورد استفاده بوده و در کتب عهد قدیم به کرات بدان اشاره شده است.احتمالا گوگرد از کلمه عربی sufra به معنی زرد گرفته شده است که ناشی از رنگ درخشانی است که در طبیعت از خود نشان می دهد،با این وجود نام سانسکریت گوگرد بنام sulvari است که به معنای دشمن مس می باشد.

ترجمه های انگلیسی از کتب عهد قدیم،از گوگرد بنام Brimstone یادکرده است که نشـات گرفته از خطابه آتش و گوگرد (Fire and brimstone)  بوده که در آن مستمعان به حالت لعن جاوید و ازلی باقی می ماندند بطوریکه منتظر بی اعتقادی و عدم پشیمانی بودند.در این بخش از کتب عهد قدیم،Hell به بوی گوگرد اشاره می کند،که در بالا گفته شد گوگرد بی بو است.بوی  گوگرد معمولا مشابه بوی سولفید هیدروژنی است که از تخم مرغ گندیده به دماغ می رسد.سوختن گوگرد دی اکسید گوگرد تولید می نماید که بویی شبیه سوختن کبریت دارد.

هومر در قرن هشتم قبل از میلاد و نیز 424 م ق از گوگرد عامل جلوگیری از طاعون نام می برد و بوئیتا (Boeotia)  دیواره های شهر را با به آتش کشیدن مخلوطی از زغال سنگ،گوگرد و قیرخراب نمود.در قرن دوازدهم،چینی ها تفنگی را اختراع کردند که نیروی پرتابی آن از مخلوط نیتزات پتاسیم (KNO3) ،کربن و گوگرد تامین می شد.در اواخر سال 1770 میلادی ، آنتوین لاوزیه (Antoine Lavoisier) موفق شد که گوگرد را به عنوان یک عنصر به جامعه علمی معرفی نماید.در 1867 میلادی،گوگرد در رسوبات زیرزمینی در لویزیانا و تگزاس کشف شد.

گوگرد عنصری معمولا در نواحی آتش فشانی یافت می شود.هم چنین رسوبات گوگرد عنصری در خلیج مکزیک،اروپای شرقی و آسیای غربی وجوددارد.اعتقاد بر این است که گوگرد موجوددر این رسوبات از واکنش باکتریایی بی هوازی بر روی کانی های سولفاتی بالاخص سنگ گچ بدست آمده است.

سلنیم عنصر شیمیایی بوده که در طبیعت به شکل آزاد پیدا نمی شود و معمولا در مقادیر زیادش سمی بوده ولی مقدار کم آن در در برخی از آنزیم ها بسیار موثر است.

سلنــــــــــیم از واژه یونانی selene به معنی ماه گرفته شده است و در سال 1817 توسط جـــــــــونز یاکــــــوب برزیلیوس (Jons Jakob Berzelius) کشف شد.رشد استفاده از سلنیم به لحاظ تاریخی حالت یکنواخت و متناسب با کاربردهای جدید بوده که می توان به ترکیبات کائوچو،عناصر آلیاژی در فولاد و یکسوکننده های سلنیم اشاره نمود.در سال 1970،سلنیم در یکسوکننده ها جایگزین سیلیس شدند ولی کاربرد اصلی آن در هادی های حساس به نور در صفحات ساده کپی است.در طی سال 1980، استفاده از سلنیم به عنوان هادی حساس به نور در این صفحات نیز رو به کاهش رفت.در حال حاضر،استفاده گسترده از سلنیم در صنایع شیشه سازی و رنگ دانه ها می باشد.

در سال 1996،تحقیقات ادامه دار نشان داد که رابطه مستقیمی بین مکمل های سلنیم و جلوگیری از حمله قلبی وجود دارد.در اواخر سال 1990،استفاده از سلنیم به عنوان یک نوع افزودنی به لوله های برنجی برای برآورده ساختن استانداردهای زیست محیطی بدون سرب از اهمیت قابل توجهی برخوردار شد.

با وجود اینکه مقادیر زیاد سلنیم سمی است،ولی یکی از ریزمغذی های اصلی در حالت های مختلف حیات است.سلنیم یکی از اجزای اصلی آمینو اسیدهای کمیاب سلنوسیستئن (selenocysteine) و سلنومتوئین(selenomethionine) است.در انسانها،سلنیم ماده ریزمغذی است که به عنوان کوفاکتور برای احیای آنزیم های آنتی اکسیدان مثل پروکسیدازهای گلوتاتئیون (Glutathione peroxidases)  یا ردوکتازتیرودوکسین(Thioredoxin reductase) عمل می کند.هم چنین سلنیم در عملکرد غده تیروئید به عنوان  یک کوفاکتور برای هورمون تیروئید نقش اصلی ایفاء می کند.

همانطوریکه در بالا بدان اشاره شد،مقدار زیاد سلنیم سمی است. مقدار بیش از حد بالایی پذیرش مجاز بیشتر از 400 میکروگرم در هر روز می تواند موجب سلنوسیس (Selenosis)  شود.علایم این بیماری شامل بوی سیر در دم بیمار،اختلالات معده ای،ریزش مو،پوسته پوسته شدن ناخن ها،خستگی، کج خلقی و  حملات عصبی می باشد.مقدار خیلی زیادی آن می تواند منجر به تسمع جگر و ورم ریوی و در نهایت مرگ می شود.

آنچه که در مورد سلنیم جالب است که بدان اشاره شود، رابطه آن با گسترش بیماری HIV است.تحقیقات زمین شناسی در مناطقی که بیماری ایدز در آن گسترش یافته است، و مقایسه آن با مناطقی که بیماری ایدز در آنها دیده نشده است،نشان دهنده این مطلب مهم است که در خاک مناطقی که ایدز در آنجا شیوع یافته است،حاوی مقادیر کمتری از عنصر سلنیم است.به عنوان مثال،درصد شیوع بیماری ایدز در مناطق پایین تر از آفریقای شمالی که سلنیم کمتری در خاک آن اندازه گیری شده است،بالا است در حالیکه در سنگال این درصد خیلی پایین تر است .خاک سنگال درصد بالاتری از عنصر سلنیم را دارد.

اما در فولاد گوگرد وسلنيم رفتار مشابهي در دارند.گوگرد در تركيب هر فولادي وجود دارد ولي سلنيم بطور عمدي به فولاد افزوده مي شود.وزن اتمي گوگرد32 با نقطه ذوب 119 C ، وزن اتمي سلنيم 79 با دماي ذوب 217 C است.هر دو قابليت يكساني در فولاد دارند و به علت كم بودن نقطه جوش ، در مذاب پايداري زيادي ندارند.

مشكل اصلي فولادسازان مربوط به پديده ترك برداري گرم يا سرخ شكنندگي است. فلذا سعي مي كنند تا حد امكان در صد گوگرد را كمتر كنند. گوگرد با آهن تركيب شده و تشكيل FeS  ميدهد كه داراي نقطه ذوب كمتري است.FeS با آهن يوتكتيكي تشكيل مي دهد كه از نقطه ذوب پايينتري تا 988 C برخوردار است.اين تركيب در دماهاي بالا بصورت مذاب در آمده  ودرمرزدانه ها تجمع مي كندفلذا باعث ترك برداري گرم يا سرخ شكنندگي Hot cracking يا Hot Shortness مي شود.شكل آخالهاي سولفيد آهن در شمش ها كروي بوده و در مقاطع كار شده كشيده ودراز است.اين سبب مي شود خواص قطعه آنيزوتروپ شود.همانطوريكه قبلا اشاره شد،Mn  تمايل زيادي به تركيب با گوگرد و تشكيل سولفيد منگنز دارد.بنابر اين، از اين خاصيت براي حذف گوگرد استفاده مي شود.با اين حال درصد بسيار  کمی FeSتشكيل مي شود كه قابليت انحلال در MnS را دارد.با اين وجود تاثيري بر روي دماي ذوب سولفيد منگنز ندارد.ميزان منگنز اضافه شده تقريبا چهار برابر درصد گوگرد است. بيشتر فولادهاي كم آلياژي و كربني حداكثر درصد گوگرد 0.04% دارند.

وجود درصد زياد MnS بر كارآيي فولاد تاثير منفي دارد.عليرغم اين موضوع، در فولادهاي خوش تراش وجود گوگرد عامل مهمي است.در واقع ، يكي از راههاي افزايش قابليت ماشينكاري ،اضافه كردن گوگرد به تركـــيب فولاد است.بيشتر اين نوع فولادها،0.10-0.30 % گوگرد دارند.وقتي ابزار برش روي سطح قطعه كار مي كنند،به علت وجود MnS طول پليسه ها كوتاهتر مي شوند و نقش روانكار را نيز ايفا مي كنند و در نتيجه صافي سطح بيشتر مي شود.

شكل،اندازه و توزيع نامطلوب آخالهاي غير فلزي تاثير نامطلوبي بر روي خواص فولاد دارند.آخالهاي غير فلزي كشيده شده قابليت كار سرد فولاد ورق در كشش عميق را مي كاهد و چقرمگي شكست را شديدا كاهش مي دهد.خواص فولاد را آنيزوتروپ مي كند وحساسيت به پارگي داغ را افزايش مي دهد.وجود چنين مشكلات براي فولادسازان، افزودن عناصري مثل كلسيم،منيزيم،زيركنيم و عناصر نادر خاكي (سديم) به ذوب را در پي داشته است.در اين روش مقدار گوگرد پس ماند به 0.001و 0.005 درصدنيز مي رسد.

در جوشکاری فولادهای خوش تراش که گوگرد زیادی دارند ،وجود سولفیدها بر جوشکاری قوسی بسیار مضر بوده و در هنگام رسوب فلز جوش از الکترودهای فولادهای نرم ، حفره و ترک تشکیل می شود.ولی استفاده از الکترودهای مصرفی با هیدروژن پایین ، نتایج قابل قبولی را در پی دارد.نسبت آهک به سیلیس این الکترود ها در حدی نگه داشته می شوند که تاثیر مخربی بر روی نتایج جوشکاری نداشته باشند.

در چدنها ، منابع متعددی برای حضور گوگرد در ترکیب موجودند.در صورتیکه منگنزی وجود نداشته باشد،گوگرد در ساختار بصورت سولفید های آهن با شکل آخالهای قهوه ای خاکستری ظاهر می شوند ولی با افزودن منگنز ، به لحاظ تمایل ترجیحی به ترکیب با گوگرد،سولفید مگنز تشکیل خواهد شد.میزان منگنز طبیعتا باید بیشتر باشد و از فرمول تجربی زیر استفاده می شود:

%Mn = 1.7 * %S+0.3

اگر دمای ریخته گری پایین باشد، مقادیر اضافی اکسید منگنز بصورت عیوب حفره ای در قطعه د رمی آید.در درصدهای بالاتر از 0.18 % گوگرد، سختی چدنهای خاکستری را افزایش می دهد ولی بر ماشینکاری چدنهای خاکستری تاثیر منفی دارد.


دسته بندی :

ديكشنري مواد

آخالها  

Inclusions

ذرات جامد ناخواسته موجود در ساختار فلزي را آخال گويند.
آزبست  

Asbestos

 نوعی مواد عايق از جنس سيليكات منيزيم به صورت الياف دراز و مقاوم به حرارت.
آزماِِِِيش چقرمگي  

Toughness Test

آزمايش تعيين مقدار انرژی ( کار ) لازم برای شكستن فلزات می باشد كه توسط ضربه ، خم كردن و پيچاندن نمونه انجام مي شود .
آزمايش سختي  

Hardness Test

آزمايش تعيين سختي فلزات كه روشهاي متعددي براي انجام آن وجود دارد. دراين آزمايش ها يك جسم خارجي با نيروئي معين بر روي سطح نمونه وارد مي گردد و ميزان نقطه اثر آن ملاكي از سختي جسم است.
آسيابهاي گلوله اي  

Ball Mill

شامل يك استوانه است كه داخل آن تعدادي گلوله  موجود مي باشد. سنگ و مواد معدني داخل استوانه ريخته شده و با چرخش استوانه سنگها در اثر برخورد با يكديگر و گلوله ها بتدريج  خرد مي شوند .
آگلومراسيون  

Agglomeration

تبديل مواد معدني پودري شكل به كلوخه، گلوله يا حبه بوسيله حرارت دادن در كوره را گويند .
آلومين  

Alumina

ترکيب  AL2O3 مي باشد. آلومين بعنوان ماده نسوز بوده و آلومين خالص، جهت صيقل كاري بكار مي رود. اين ماده داراي نقطه ذوب 2050 درجه سانتيگراد است و سختي در حدود سختي الماس دارد.
آلومين  

Alomina

اكسيد آلومين Al2O3  كه بسيار سخت بوده و دماي ذوب آن حدود 2050 درجه سانتيگراد مي باشد .
آلومينيوم ويژه خالص  

Super Purity Aluminium

آلومينيوم خالص با درجه خلوص 99/99% .
آلياژ آلپاكس  

Alpax alloy

آلياژ آلومينيوم، سيليسيم كه داراي خواص ريخته گري عالي، استحكام خوب، نرمي و مقاوم خوردگي خوبي هستند.
آلياژهاي ريختگي  

Cast Alloys

آلياژهايي که توسط ريخته گري می توان از آنها قطعات صنعتی را توليد نمود.
آلياژهاي زماك  

Zamak

سري آلياژهاي روي، آلومينيوم و منيزيم و مس و نام آمريكايي  آنها مازاك كه گاهی در صنعت به آنها سرب خشك گويند.
آلياژهاي كارپذير  

Wrought Alloys

آلياژهايي كه بوسيله نورد، فورج يا اكستروژن و ديگر فرآيندهاي شكل دهي در حالت جامد به شکل های مورد نظر  توليد می گردد.
آلياژهاي منيزيم  

Magnesium Alloys

 
آلياژهاي نيكروم  

Nichrome Alloys

آلياژهاي پرنيكل داراي 65 درصد الي 85 درصد نيكل، 20 درصد آهن، 15 الي 20 گرم مقاوم به اكسايش، استحكام در حرارت زياد و مقاومت الكتريكي زياد.
آهك  

Lime

CaO تركيب اكسيد كلسيم سفيد رنگ است كه با حرارت دادن سنگ آهك (CaCO3) توليد و براي خشك كردن بعضي گازهاي اسيدي و تصفيه گازها (غير از كلر و گازهاي اسيدي ) و تصفيه گاز زغال سنگ و ساختن ملاط با ماسه، ساختن شيشه , گرد سفيد شويي، سود محرق و بعنوان سرباره در ذوب آلياژهاي آهن  به كار برده مي شود .
آهن آلفا  

Alpha Iron

آلوتروپي ازآهن كه در دماهاي كمتر از 910 درجه سانتي گراد ( در آهن خالص ) پايدار مي باشد و ساختار كريستالي B.C.C ( مكعب مركز دار) ‌دارد. اين فاز بنام فريت نيز شناخته مي شود.
آهنگري ، پتك كاري  

Forging

فرآيندي كه طي آن فلز در دماي بالا بوسيله ضربه زدن و یا اعمال فشار بر روی آن (پتك كاري يا پرس كاري)  شكل مي گيرد.
استحكام كششي  

Tensile Strength

مقاومت كششي–حداكثر تنشی است كه در جريان آزمايش كشش نمونه جسم مورد نظر تحمل مي كند.
استخراج  

Extraction

اين اصطلاح در مورد كليه فرآيندهايي كه براي تحصيل فلزات از كاني هاي آن به كار گرفته مي شود، شامل خرد كردن كاني و تجزيه شيميايي آن و جداسازي فلز از كاني  اطلاق مي گردد.
گرافيت

Graphite

يكي از دو شكل طبيعي كربن متبلور است. شكل متبلور ديگر آن الماس مي باشد. گرافيت داراي ساختار ورقه اي با ظاهر شش ضلعي مي باشد. اين ماده سياه رنگ و بسيار نرم مي باشد و در برخي موارد درخشان نيز هست. گرافيت درساخت نوک مداد ها معمول بکار مي رود.

لحيم كاري

Brazing

روش اتصال فلزات به يكديگر با به كارگيري آلياژي زود ذوب

مات

Matte

مخلوط سولفوري مس و معمولاً همراه با نا خالصي سولفور آهن مي باشد که در  جريان ذوب و تصفيه گازهاي سولفوري بدست مي­آيد.

مازوت

Residual Oil

يك نوع از سوخت هاي فسيلي است كه اغلب از آن در كوره هاي زميني استفاده مي شود .

ماشينكاري

Machining

براده برداري از سطح فلزات توسط ابزار ساينده در دستگاههايي مانند ماشين تراش و فرز

ماگما

Magma

سنگهاي مذاب که از اعماق زمين در آتشفشانها به سطح زمين مي آيند را كه در واقع حالت  خميري شكل دارند، ماگما گويند .

متالورژي

Metallurgy

علم و تكنولوژي استخراج ،‌توليدو شناخت فلزات و آلياژها و تكنولوژي كار با آنها مي باشد 

متالوژي پودر

Metallurgy ‍Powder

يكي از روشهاي توليد قطعات فلزي كه در آن از پودر فلزات استفاده مي گرددو با فشردن آنها ( پودر فلزات )‌در قالب و زينتر كردن آنها( در کوره) ، قطعه راتوليد مي کنند.

متالوگرافي

Metallography

ساختار شناسي- شاخه اي از علم متالورژي است كه ساختار و تركيب فلزات جامد و آلياژها را با آماده كردن و آزمايش سطح فلز , بررسي مي كند .

محفظه گرم

Hot chamber

نوعي از ماشينهاي ريخته گري تحت فشار (Die cast) که سيلندر تزريق مذاب آن در داخل کوره ذوب قرار گرفته است.

مرمر

Marble

يكي از اشكال طبيعي و متبلور سنگ آهك است كه بعنوان سنگهاي زينتي از آن در ساختمان سازي استفاده مي گردد. اين نوع سنگ از انواع كانسارهاي دگرگوني مي باشد كه در اثر فشار و حرارت زياد بوجود آمده است.

مس الكتروليز شده

Electrolytic copper

اين مس داراي خلوص حدود9  /99 درصد مس مي باشد و به صورت قطعات هادي در صنايع الكتريكي مصارف متعدد دارد.

مس بليستر

Blister Copper

شكل ناخالص مس است كه با دميدن هوا به داخل مات مس مذاب،  توليد مي شود.

نقره آلماني، ورشو

German Silver

آلياژهاي فاز آلفاي مس، نيكل ، روي با 10 الي 30 درصد نيكل، 50 الي 60 درصد مس و ما بقي روي بوده و با افزودن 1 تا 3 درصد تنگستن سخت تر مي شوند.

نورد

Rolling

يكي ديگر از فرآيندهاي شكل دهي كه فلز از ميان دو غلتك در خلاف جهت هم گردش دارند و سرعت محيطي آنها يكسان است ، عبور داده شده و شكل مي گيرد.

نورد گرم

Hot rolling

در اين روش شمشها تا دماي خاصي گرم شده و سپس  از ميان غلتكهاي نورد  عبور داده مي شوند. تا به شکل مطلوب در بيايند.

نيروي پيچشي

Torsion Force

نيرويي كه براي پيچاندن نمونه لستفاده مي شود و بر حسب كيلوگرم بر سانتي متر مربع اندازه گيري است .

نيروي ضربه اي

Impact force

نيرويي که بر نمونه مورد آزمايش ضربه وارد مي کند

نيروي كششي

Tensile

نيرويي كه نمونه را تحت كشش قرار مي دهد .

هاستلوي

Hastelloy

آلياژهاي بر مبناي نكيل و نوعاً محتوي 65  درصد نيكل، 20 درصد موليبدن ، 5 درصد آهن با تركيبات ديگر. و در ريختگي كوره ها ، پره توربين و متعلقات ترموكوپل به كار مي روند.

هدايت حرارتي

Thermal conductivity

مقدار حرارتي كه در واحد زمان از صفحه اي به ضخامت 1 متر و سطح 1 مترمربع ، عبور مي کند.

همگني

Homogeneity

يکنواختي و تشابه تركيب و خواص فيزيكي در سراسر جسم است .

ورق كاري

Foil

ورقهاي  سياه نازك از آلومينيوم ، مس و قلع و ... كه حدود 0025/0 تا 125/0 ميليمتر ضخامت دارند.

ولكانو

Volcano

كوه آتش فشان


دسته بندی :

نمودار آهن - کربن

بانك اطلاعت مواد
دسته بندی :

انواع ماسه ( از نظر نحوه یافت و دسترسی ) :

 

الف) ماسه طبیعی : شامل ماسه های رودخانه ای و ماسه های بادی

ماسه طبیعی مستقیماً از منابع طبیعی ، استخراج و استفاده می شود و هیچگونه کار اضافی روی آن انجام نمی شود مثل ماسه کنار رودخانه ( این ماسه ها را بوسیله HCl آزمایش می کنند که حاوی آهک نباشد ).

حسن ماسه رودخانه ای در این است که شسته شده و میزان گردی بیشتری دارند در نتیجه کیفیت سطحی قطعات بالا می رود. اما در ماسه بادی ، خاک نیز وجود دارد که خاصیت چسبندگی دارد.

ب) ماسه مصنوعی:

در این حالت ، معادن طبیعی را شناسایی کرده و مثلاً آن را الک کرده و ناخالصی هایی مثل آهک را حذف می کنند و آن را خرد کرده و گرد می کنند ( این ماسه ها تحمل دمایی بالاتری دارند ).

 

انواع ماسه ( از نظر شکل ظاهری ) :

 

1-    ماسه های گرد:

در این حالت شکل ذرات ماسه در زیر میکروسکوپ ، کروی است. اکثر ماسه های مصنوعی از نوع ماسه های گرد هستند که کیفیت سطحی بهتری را ایجاد می کند و قابلیت عبور گاز بهتری  نیز دارد ( قابلیت عبور گاز به تخلخل ماسه مربوط است ).

2-    ماسه های شبهه گرد

این نوع ماسه در قسمت هایی گرد و در قسمت هایی گوشه دار است.

3-    ماسه های گوشه دار

این ماسه کاملاً گوشه دار است و بطور کامل در هم چفت می شوند و استحکام بالاتری ارائه می دهد و از نظر حمل و نقل قالب و حرکت مذاب و فشار مذاب ، استحکام بالاتری دارد اما قابلیت عبور گاز کم است.

4-    ماسه های مخلوط

این ماسه ها شکل خاصی ندارند.

 

انواع ماسه ( از نظر ترکیب شیمیایی ) :

 

1-    ماسه سیلیسی ( SiO2 )

سیلیس یک حالت آلوتروپیک و چند ساختاره دارد و در دماهای مختلف ، ساختارهای متفاوتی دارد ( منگنز، کبالت ، قلع و زیرکنیوم نیز آلوتروپیکند ). در نتیجه اگر با سرعت های مختلف سرد شود ، خواص متفاوتی ارائه می کند ( در طراحی قالب برای مواد دیر گداز ، مشکل ساز است زیرا منجر به ترک خوردن بدنه قالب می شود ).

برای دیدن تصویر در اندازه واقعی روی آن کلیک کنید

 همان طور که از وزن مخصوص ها ( دانسیته ها ) ملاحظه می شود ، با تغییرات دما ، انبساط و انقباض در ابعادشان بوجود می آید که باعث  شکست قالب می شود ( بیشترین تغییرات را Cristobalite دارد ).

یک مزیت ماسه سیلیسی ، وجود معادن زیاد و ارزانی آن است.

متوسط ضریب انبساط این ماسه  Cm/Cm ºC 6-10×16.2 است ( یک نمونه استاندارد از ماسه می سازیم و تا دمای مورد نظر می بریم و نگه می داریم سپس یک درجه اضافه می کنیم و طول را اندازه گیری می کنیم ).

این ماسه برای ریخته گری قطعات آهنی و فولادی و فولاد آلیاژی مناسب نیست و بصورت ماسه Backing  استفاده می شود. در چدن ریزی معمولاً از ماسه سیلیسی مصنوعی استفاده می شود.

بانك اطلاعات مواد

1-    ماسه زیرکنیوم ( ZrO2.SiO2 )

زیر در طبیعت همراه با سیلیس است. غلظت زیر در ماسه بین 40 تا 50 درصد است.

این نوع ماسه خاصیت انبساط حرارتی دارد و ضریب انبساط حرارتی آن حدوداً Cm/Cm ºC 6-10×4.5 است که از ماسه سیلیسی پایین تر است و برای مواد قالب و آجر و بدنه کوره مناسب است.هدایت حرارتی این ماسه بالاتر است و سریع تر خنک می شود ( 4 برابر کوارتز ). دارای وزن مخصوص ( دانسیته )  gr/Cm34.75 است که تقریباً 2 برابر ماسه سیلیسی است که یک مزیت است زیرا در واقع چگالی توده ، زیاد است و یک بخش از نیروی مذاب را خنثی می کند.

تحمل دمایی ماسه زیرکونی بالاست و خاصیت دیرگدازی خوبی دارد  درنتیجه برای فلزات با دمای ذوب بالا کاربرد دارد ( حدوداً در ºC 2000 به حالت خمیری در می آید ). از دیگر خصوصیات این ماسه دانه های گرد و منظم و عدم خیس شدن توسط مذاب ( نمی چسبد ) و عدم تمایل به واکنش شیمیایی با اکثر فلزات است و اگر سرباره یا مذاب ، دارای موادی باشند که باعث خوردگی بدنه کوره شود ، این ماسه مقاوم است.

 

2-    ماسه الوینی ( سیلیکات های مضاعف آهن و منیزیم (Mg.Fe)2SiO2 )

Forsterite         2MgO.SiO2    ,  Fayalite           2FeO.SiO2

دیرگدازی این ماسه نسبت به ماسه سیلیسی بالاتر و از ماسه زیرکونی کمتر است ( ºC 1850-1750 ) که برای فولاد ساده و پر کربن و کم آلیاژ مناسب است. این ماسه دارای وزن مخصوص ( دانسیته ) gr/Cm3 3.3 است و از نوع ماسه های گوشه دار است. انبساط حرارت این ماسه از ماسه سیلیسی کمتر و از ماسه زیرکونی بالاتر است.

 

3-    ماسه کرومیتی ( FeO.Cr2O3 )

این ماسه عمتاً بصورت ماسه رویه ( Facing Sand ) استفاده می شود ، دیرگدازی بالایی دارد ( ºC 1850-1450 ) که هر چه اکسید کرم کمتر باشد بهتر است. این ماسه دارای وزن مخصوص ( دانسیته )  gr/Cm34.5 می باشد. در شرایطی که با چسب خاک رس ترکیب شود در ºC 1000 دارای انبساط حرارتی mm/mm 0.17 است ، سیلیس در همان شرایط دارای انبساط حرارتی mm/mm 0.6 و زیر mm/mm 0.076 است. این ماسه ، سیاه رنگ و از نوع ماسه های گوشه دار است.

 

4-    ماسه شاموتی ( 3Al2O3.SiO2 )

این ماسه دارای دیرگدازی ºC 1750-1670 است که هر چه Al2O3 بیشتر باشد ، بهتر است. از این ماسه در ریخته گری بصورت آجر و بدنه کوره استفاده می شود. این آجر نارنجی نیز دارای انبساط و انقباض بوده و ترک می خورد. این ماسه برای فولاد آلیاژی و کم کربن مناسب است.

 

انتخاب ماسه :

از چند نقطه باید نمونه گیری کرد و تست ترکیب شیمیایی و دیر گدازی و .... انجام داد ( برای اینکه رطوبت و مواد همراه ماسه تبخیر نشود ، باید در ظرف بسته نمونه برداری کرد.

بانك اطلاعات مواد

خواص عمومی ماسه ریختگی :

 

1)      استحکام در حالت تر ( Green Strength ) : استحکام فشاری و برشی در گوشه ها

2)    استحکام در حالت خشک ( Dry Strength )

3)      استحکام در حالت حرارتی ( Hot Strength ) : سریع به دمای بالا می رسد ، وقتی رطوبت خود را از دست می دهد نباید شکل خود را از ذست بدهد زیرا باعث ایجاد ترک و خرد شدن یا پلیسه و زائده و رگه می شود.

4)      قابلیت عبور گاز ( Permeability ) : گاز متصاعد شده از چسب و پوشش و هوای داخل باید خارج شود. به شکل و دانه مواد قالب و میزان کوبش و چسب و رطوبن بستگی دارد.

5)      پایداری حرارتی ( Thermal Stability ) : ابعاد خود را حفظ کند و ضریب انبساط حرارت پایین داشته باشد.

6)      دیرگدازی ( Refractoriness ) : مواد قالب تغییر حالت ندهد و سوخته و ذوب نشود و مقاوم به حرارت باشد.

7)      قابلیت شکل گیری ( Flowability ) : به اندازه دانه بستگی دارد.

8)      کیفیت سطحی ( Produces Good Casting Finish ) : به خواص فیزیکی دانه بستگی دارد.

9)      قابلیت فروپاشی ( Collapsibility ) : تابع نوع چسب مصرفی است.

10)  قابلیت بازیافت ( Reusable )

11)  تهیه و کنترل ساده

12)  درت خنک کنندگی ( Remove Heat )

نکته : ماسه سیلیسی را با خاک اره مخلوط کرده و جلو انبساط و انقباض را می گیرند یا با چسب سیلیکات سدیم و مواد افزودنی برای راحت جدا شدن مخلوط می کنند.

نکته : رطوبت در صنعت بین 4 تا 6 درصد وزنی است ، اگر رطوبت کم باشد ، استحکام تر کاهش می یابد و اگر زیاد باشد ، باعث ایجاد موک گازی می شود ( استحکام تر psi 7-6 است ).


دسته بندی :

تاثیر نیکل

 

نیکل فلز سفید نقره ای رنگی است که پرداخت بالایی دارد.این عنصر در طبیعت با گوگرد،آرسنیک ترکیب می شود.در تولید سکه نیز از آن استفاده می شود.

کاربرد نیکل به دوران باستان و در حدود 3500 م ق بر میگردد.برنزهایی که در سوریه امروزی کشف شده اند،در حدود 2 درصد نیکل دارند.علاوه برآن،دست نوشته های چینی هستند که در آنها به استفاده از مس سفید برای جهت یابی در 1400 و 1700 م ق اشاره شده است.با این وجودبا توجه به اینکه سنگ معدن نیکل معمولا با نقره به اشتباه گرفته می شد،از اینرو تاریخ دقیق و قابل اعتمادی از کاربرد آن وجود ندارد.

اهمیت سنگ معدن های حاوی نیکل (به عنوان مثال کوپرونیکل kupfernickel ) در سبز کردن شیشه ها خلاصه می شد.در سال 1751،بارون اکسل فدریک کرونشتات (Baron Axe Fredrik Cronstedt) تلاش کرد که مس را ازکوپرونیکل (که امروزه نیکولیت نامیده می شود) استخراج نماید،اما در نهایت فلز سفید رنگی بنام نیکل را از آن استخراج کرد.سکه های نیکلی ،نخست، در سال 1881 در کشور سوییس استفاده شد.

نیکل در بیولوژی چندین نقش را ایفا می نماید.در واقع،اولین پروتئینی که متبلور می شود،اوریز(آنزیمی که اوره را به کربنات آمونیم تبدیل میکند)(Urease) است که دارای عنصر نیکل است و به هیدرولیز اوره کمک می کند.هیدروژناسهای NiFe  علاوه بر کلاسترهای آهن-گوگرد،دارای نیکل نیز می باشند.

نيكل به عنوان عنصر آلياژي در فولاد بهمراه كروم استفاده مي شود. وزن اتمي آن 59 بوده و در 1435 C ذوب مي شود.در حالت مذاب و جامد بهر نسبتي در آهن حل مي شود.نيكل عنصر آستنيت زا است و هيچگونه تاثيري در تشكيل كاربيد و اكسيد ندارد. به علت اينكه تمايل به تركيب آن با كربن و اكسيژن كمتر از آهن است.

نيكل سختي پذيري فولاد را افزايش مي دهد و در حدود 0.25 تا 5 درصد در تركيب فولاد وجود دارد. نيكل چقرمگي شكست فولاد بهمراه استحكام و سختي آن را افزايش مي دهد. فلذا،در مواقعي كه در دماهاي پايين به چقرمگي شكست بالاي نياز باشد درصد آن تا 9 نيز مي توان باشد.در فولادهاي زنگ نزن آستنيتي7 تا 35 درصد نيكل وجود دارد.در اين فولادها براي خنثي كردن اثر فريت زايي كروم از نيكل بهره مي گيرند.فولادهاي با 30 – 40 % نيكل ،آلياژ Invar  ناميده مي شوند كه انقباض و انبساط بسيار كمتري دارند.

نيكل خودبخود باعث افزايش مقاومت خوردگي مي شود. در درصدهاي بالاتر از 7%  باعث آستنيتي شدن فولادهاي مقاوم در برابر مواد شيمیايي تا دماهاي خيلي زياد مي شود . در دماهاي بالاي 600 C استحكام فولادهاي آستنيتي بيشتر مي شود.

نیکل بهر نسبتی در آهن گاما حل می شود وفقط 10 درصد در آهن آلفا قابل حل است.با تشکیل محلول جامد هنگام افزودن نیکل ، فریت را چقرمه کرده و استحکام می بخشد و تا حدی سختی پذیری آستنیت را زیاد می کند.در مقادیر کربن زیاد، نیکل سعی می کند که در آستنیت باقی بماند.

از آنجاییکه نیکل در کاهش دمای تبدیل گاما به آلفا بسیار موثر است، این محلول جامد تا دمای اتاق آستنیتی باقی مانده و بالاخص اگر درصد نیکل بیشتر از 30% باشد دیگر نرخ سرد کردن تاثیر چندانی نخواهد داشت.

نیکل کاربید ساز نیست و در فولاد بصورت فاز محلول جامد می باشد.نرخ دیفوزیون کربن در محلول جامد در حضور نیکل چندان تحت تاثیر درصد نیکل نیست ولی در صورت وجود کربن در محلول جامد، نرخ دیفوزیون نیکل در آن بسیار کند خواهد بود.تاثیر نیکل بر استحاله آستنیتی در محدوده دمای بینیت موثر تر از دمای تشکیل پرلیت است.از اینرو، تاثیر نیکل بر اساس اثر آن بر فریت و نحوه تشکیل و توزیع فاز کاربیدی سنجیده می شود.

برای افزایش استحکام و سختی بدون کاهش قابل ملاحظه داکتیلیتی فولادهای کم کربن معینی، تا 5 درصد نیکل اضافه می شود.ساختار پرلیت کم کربن ریز بوده چون نیکل کربن یوتکتوئید را می کاهد و در مقادیر 3-5 % Ni  با آرام سرد کردن از دمای آستنیته، فریت نیکل دار تشکیل می شود.در فولادهای با نیکل بالاتر از 5 %  بدلیل حضور مارتنزیت ، امکان تردی فولادهای آرام سرد شده نیز وجود دارد.فولادهای با 15-20 % Ni  کاملا مارتنزتی بوده که در سیستم های آهن – نیکل ، بیشترین سختی 300 HB  را دارد.با افزایش نیکل از این مقدار، آستنیت ظاهر شده و سختی کاهش می یابد.

فولادهای نیکل دار همانند سایر فولادهای آلیاژی بعد از آبکاری و برگشت به خواص مطلوبی می رسند.فولادهای 3-5 %Ni  در دماهای پایین تر از فولادهای با کربن مشابه بخوبی آبکاری می شوند چراکه نیکل دمای استحاله یوتکتوئید را می کاهد.علاوه بر آن کاربیدهای کمپلکسی در این فولادها تشکیل نمی شود فلذا زمان همدمایی کوتاهتر خواهد شد.بدلیل کاهش احتمال دکربوریزاسیون و اعوجاج می توان از دمای بالا و قابل قبول استفاده کرد تا ترکیب عالی از مقاومت ضربه خوب و داکتیلیتی و ازدیاد استحکام بدست آید.

فولادهای سختی سطحی شونده کم کربن اغلب دارای تا 3%  نیکل هستند.در چنین فولادی ، سطح چقرمه ولی محکم همراه با خواص قابل قبول در مرکز بوجود می آید.نیکل با کاهش دمای استحاله،و یکسان کردن دمای سطح و مرکز، اعوجاج را می کاهد.نیکل نرخ دیفوزیون کربن را می کاهد.بنابر این در فرآیند کربوریزاسیون،به زمان زیادی نیاز است.افزودن 1 درصد کروم به ترکیب فولاد،از دیفوزیون آرام کربن جلوگیری می کند . ولی باید دقت کرد که کروم زیاد تردی سطح را زیاد می کندو در نتیجه امکان کنده شدن پوست Scaling  بیشتر می شود.

افزودن نیکل به فولادهای کم کربن سبب افزایش مقاومت ضربه در دماهای کـــم  می شود.فولاد نرمــــــــال شده با   ترکـــیب 0.1 % C,3 % Ni  انرژی ضربه 40-50 ft.Ib  در دمای -75 C  دارد در حالیکه انرژی ضربه همان فولاد بدون نیکل با همان درصد کربن 10 ft.ib است.چنین فولادهای نیکل داری از قابلیت بالای جوشکاری برخوردار هستند.فولاد کم کربن با 9 درصد نیکل برای فلز جوش استفاده می شود که نیاز به انرژی ضربه خوب در دماهای پایین است.نیکل مقاومت خوردگی اتمسفری این فولادها را افزایش می دهد.

اگر چه  فولادهای نیکلی استفاه وسیعی دارند، معهذا برای بهبود و حصول به خواص فیزیکی و مکانیکی مورد نظر درصدی از کروم یا مولیبدن نیز به ترکیب اضافه می شود.این درصد ناچیز از عناصر فوق سختی پذیری فولاد را افزایش می دهد و به تبع آن استحکام بالا و مقاومت سایشی زیاد همراه با همان چقرمگی بدست می آید.فولادی از این نوع را می توان 1-4 % Ni, up to 1.5 % Cr  و اغلب تا 0.5 % Mo  برای کاهش حساسیت تردی آبی مثال زد.

در فولادهای نیتریدی استاندارد کروم- مولیبدن- آلومینیوم مقدارن نیکل تا 3.5 درصد است و دراین فرآیند نیتریداسیون، ترکیب های بین فلزی نیکل- کروم تشکیل می شود. سطح بسیار سخت شده ولی رسوب سختی مرکز استحــــــکام تسلیـــــم را به اندازه 20 ton/ in2 افزایش می دهد.

آلیاژهای مغناطیس دایم از نوع Alnico   دارای نیکل از 11 تا 32 درصد هستند.در توربینهای گازی و در مصارفی که نیاز به استحکام بالا در دماهای بالا می باشند، آلیاژهای نیکل- آهن ، سری Inconel, Nimanic,  بکار می روند.آلیاژهای نیکل - آهن 35-95  درصد نیکل داشته و از نفوذ خواص مغناطیسی بسیار بالایی برخورداند و در مصارف الکتریکی استفاده میشوند.سایر آلیاژهای آستنیتی نیکل  - آهن در موارد معینی بکار می روند. به عنوان مثال، Invar  که تقریبا 36 % Ni  دارد، انبساط ناچیزی در محدوده وسیعی از درجه حرارت دارد فلذا در فنر ها کاربرد زیادی خواهند داشت.علیرغم ساختار آستنیتی پایدارآلیاژ 30 درصد نیکل-کروم، تغییرات نفوذ مغناطیس در نزدیکی دمای اتاق امکان دستیابی به نفوذ مغناطیس متغیر با تغییر دما را فراهم می آورد.مقاومت های تشعشعی الکتریکی از آلیاژهای نیکل- کروم یا نیکل – آهن می باشند که مقاومت اکسیداسیون عالی در دماهای بالا دارند.

نیکل با چدن در هر نسبتی آلیاژ تشکیل می دهد.در چدنها، نیکل گرافیت زای متوسطی بوده و درصد پرلیت را زیاد می کند و مقدار فریت آزاد را می کاهد.فلذا یکنواختی ساختار و خواص را بیشتر می کند.از اینرو چدنهای آلیاژی با نیکل ، خواص و ساختار یکنواخت تری در مقاطع نازک و ضخیم از خود نشان می دهد.

افزودن مقادیر کمی از نیکل 0.1- 1 %  پرلیت را اصلاح می کندو اگر مقدار زیادی اضافه شود، ساختار مارتنزیت و آستنیت در ریزساختار ظاهر می شود.از طرفی اصلاح و پایدارسازی پرلیت قابلیت ماشینکاری چدنها را افزوده و سختی پذیری آنها را زیاد می کند.بهمین دلیل است که چدنهای آلیاژی نیکل دار بیشتر در ریختگی های موتور ماشین کاربرد دارد.

افزودن مقدار کمی از نیکل اثری حدود یک سوم اثر سیلیس بر گرافیت زایی داردو بنابراین، اگر در چدنهای آلیاژی نیکل دار بخواهیم پدیده گرافیت زایی را محدود کنیم باید درصد سیلیس را کمتر کنیم که عملا چنین کاری در اکثر موارد عملی نیست. برای این منظور، کروم به ترکیب اضافه می شود.

Ni Resist  چدن پرنیکلی است که نیکل و مس به حد کافی در آن است تا که ساختار آستنیتی پایدار باشد و بتوان به خواص فیزیکی و مکانیکی مورد نظر دست یافت.این چدن بالاخص در محلولهای متوسط مقاومت خوردگی خوب داشته و مقاومت حرارتی در دماهای پایین بهتر شده ای داردوNicrosilal  چدن آستنیتی نیکل داری است که مقاومت حرارتی زیادی در دماهای بالا دارد.

Ni Hard  چدن سفید مقاوم به سایشی است که نیکل کافی داشته تا ساختار مارتنزیتی را در شرایط بعد از ریختگی ارتقاء دهد. اگر درصد نیکل زیاد شود، احتمال وجود آستنیت باقی مانده نیز زیاد خواهد شد.


دسته بندی :

کروم

کروم فلز سخت و درخشان با قابلیت پولیش بالا است و بی بو بدون مزه است.این فلز با ترکیب با اکسیژن و تشکیل فیلم اکسید بر روی سطح فولاد،از اکسیداسیون سطوح زیرین جلوگیری می کند.

در بیست وششم جولای 1761،یوهان گوتلب لمان(Johann Gottlob Lehmann) در کوهستان های اورال ماده معدنی نارنجی رنگی را پیدا کرد که وی آن را سرب قرمز سیبریه ای (Sibrain red lead)  نام نهاد.با وجوداینکه این ماده با ترکیب سرب با سلنیم به اشتباه گرفته شد،ولی در واقع اینترکیب کرومات سرب با فرمول PbCrO4 بود که اکنون به نام کروکویت معدنی (Crocoite) شناخته می شود.

در سال 1770، پیتر سیمون پالاس(Peter Simon Pallas) در همان محلی که لمان به کاوش پرداخته بود،ماده معدنی سرب مانند به رنگ قرمز را یافت که خواص عالی در ساخت رنگدانه های رنگ از خود نشان میداد.استفاده از سرب قرمز سیبریان به عنوان رنگدانه گسترش فراوانی یافت.رنگ زردروشن که از کروکویت ساخته می شد،به صورت رنگ مدل نیز شناخته شد.

در سال 1797، لویس نیکلاس ون کولین(Louis Nicolas Vauquelin) نمونه های از سنگ معدنی کروکویت بدست آورد.وی توانست که از طریق مخلوط کردن کروکویت با اسید هیدروکلریک ،اکسید کروم با فرمول CrO3 را تولید کند.در سال 1798،ون کولین کشف کرد که با حرارت دادن این اکسید در کوره زغالی می توان کروم فلزی را تولید نمود.

در طی سال 1800، کروم یکی از عناصر اصلی رنگ ها را تشکیل می داد و در نمک های چرم سازی استفاده می شد ولی کاربرد اصلی آن در تولید آلیاژها بودکه 85 درصد کاربرد آن را به خود اختصاص می داد.

کروم سه ظرفیتی (Cr(III),Cr3+) به مقدار کم در متابولیسم شکر در انسان نیاز است و فقدان آن ممکن است سبب بیماری به نام فقدان کروم شود.برخلاف آن،کروم شش ظرفیتی بسیار سمی است.اخیرا دیده شده است که مکمل های غذایی پیکولینات کروم باعث آسیب های کروموزمی در انسان می شود که از اینرو در ایالات متحده ،رژیم غذایی روزانه برای تامین کروم از مقدار 200-50 میکروگرم برای بزرگسالان تا 35 میکروگرم(برای بزرگسالان مرد) و 25 میکروگرم (برای بزرگسالان زن) کاهش داده شده است.

 

كروم عنصر اصلي در فولادهاي زنگ نزن است.علل اصلي در افزودن كروم به تركيب فولاد را مي توان در عوامل زير دانست:

·        افزايش سختي پذيري فولاد

·        حفظ استحكام و سختي فولاد در دماهاي بالا و شرايط كاري

·        افزايش مقاومت خوردگي در محيط هاي اكسيد كننده

وزن اتمي كروم 52 بوده و نقطه ذوب آن 1875 C است. و در هر دو حالت مايع و جامد بهر نسبتي در آهن حل مي شود.در بررسي رفتار كروم به عنوان عنصر آلياژي سه عامل زير را بايد در نظر گرفت:

·        كروم تمايل زيادي به تركيب با كربن دارد و لذا ذرات كاربيدي همان كاربيدهاي كمپلكس آهن-كروم هستد.

·        كروم با اكسیژن تركيب شده و تركيب ديرگداز غيرفلزي اكسيد كروم تشكيل مي دهد كه نقش فيلم سطحي محافظ در سطح فولاد را بازي مي كند.

·        كروم فريت زاي بسيار قوي است.

در حدود 13% كروم در تركيب فولاد باعث محدود شدن فاز آستنيت در ريزساختار مي شود. با افزايش درصد كروم، مقاومت خوردگي فولاد زياد مي شود. وهم چنين در دماهاي بالا مقاومت به اكسيداسيون آنها زياد خواهد شد.

حضور كروم باعث مي شود دماغه هاي نمودار TTT به سمت راست تغيير مكان دهند و سختي پذيري افزايش يابد. با اين وجود با افزايش درصد كروم جوشكاري آنها مشكل خواهد شد.به ازاي افزايش يك درصدي كروم در تركيب فولاد استحكام كششي فولاد از 80 تا 100Mpa  افزايش مي يابد.

کروم مقاومت خوردگی و استحکام فریت را شدیدا افزوده ولی تاثیر متوسطی بر سخت گردانی فاز آستنیت دارد.در فولادهای پرکربن ، مقاومت به سایش را افزایش میدهد.

افزودن کروم به آهن خالص گستره پایداری فاز گاما را محدود کرده و در درصدهای 13 % پایداری فاز فریت دلتا را تا دمای اتاق افزایش می دهد.افزودن بیش از 30 %  کروم به ترکیب، فاز بین فلزی سیگما FeCr را تشکیل می دهد.لازم است یادآوری شود که حضور عناصر دیگر بر تشکیل فاز سیگما تاثیر دارند بطوریکه با توجه به ترکیب شیمیایی فولاد می تواند در درصد های پایین کروم نیز تشکیل شود.به عنوان مثال ، فولاد زنگ نزن 18/8 که عناصر کاربید زایی مثل 3 %  مولیبدن و 1 % تیتانیوم دارد، با عملیات حرارتی در دمای 850 C فاز سیگما در ساختار ظاهر می شود.علاوه بر آن، در درصدهای کروم کمتر از  20 % و در حضور عنصر کبالت در مقادیر 7-10 % چنین تردی ناشی از حضور فاز سیگما مشهود است.

 وجود کروم در ترکیب آلیاژهای آهن – کربن بالاخص در درصدهای کربن زیاد تشکیل کاربیدها را می افزاید.در سیستم آلیاژی آهن-کربن-کروم چهار نوع کاربید کمپلکس اصلی وجود دارند: سمنتیت رومبیک (FeCr)3C  در درصدهای کروم تا 15 % ،کاربید کروم تریگونال (CrFe)7C3 در درصدهای آهن 55 % ،کاربید کروم کوبیک(CrFe)4C  که در آن کروم تا 24 %  جایگزین آهن می شود و کاربید کروم اورتورومبیک (CrFe)2C3 که درصد کمی از آهن را داراست ولی فقط در فولادهایی یافت می شود که تقریبا 9 %  کربن داشته باشند.کروم اضافی از مقدار لازم برای تشکیل کاربید وارد محلول جامد می شود.

برخلاف کبالت، درصدی از کروم که در محلول جامد وجود دارد، تاثیر کمی بر قابلیت سخت گردانی در مقایسه با سایر عناصر آلیاژی دارد.کرومی که در محلول جامد است ، زمان استحاله ایزوترمال آستنیت در فولاد های با 0.3 % کربن و  بیشتر از 2 %  کروم را زیادتر می کند.و در سرعتهای سردکردن عادی پرلیتی در ساختار تشکیل نمی شود.ولی اگربتوان  شرایط را طوری فراهم آورد که با نرخ سرد کردن عادی از استحاله مارتنزیتی جلوگیری شود ، در ریزساختار بینیت ریز تشکیل خواهد شد.

افزودن کروم به فولاد درصد کربن پرلیت یوتکتوئید را کاسته و دمای استحاله آستنیت را می افزاید. در فولاد 12 % کروم و0.35 %  کربن، استحاله یوتکتوئید در 0.35 %  کربن و دمای یوتکتوئید  800 C   رخ می دهد.

فولادی با 0.25 تا 0.45 درصد کربن و1.5 درصد کروم استحکام کششی و داکتیلیتی خوبی داشته ولی باید در برابر رشد دانه و تردی احتیاط های لازم را بعمل آورد.بعد از کوئنچ، این فولاد در برابر برگشت مقاومت خوبی از خود نشان می دهد فولاد با 1 درصد کروم مقاومت خوبی در برابر خوردگی اتمسفری عادی از خود نشان می دهد. وجود 0.5 درصد مولیبدن  استحکامهای کششی را تضمین می کند.

قطعات فورج تحت کشش بالا و بزرگ از فولادهای کروم دار 3 تا 3.5 درصد کروم  همراه با 0.5 درصد مولیبدن تولید می شوند که استحکام بالای آنها ناشی از ریزساختار بینیتی است که در حین سرد کردن آرام تشکیل شده است.

افزایش درصد کروم تا 5-6 % همراه با درصد کمی از مولیبدن یا نیوبیوم مقاومت خوردگی نسبتا خوب همراه با مقاومت خوب به خزش در دماهای نسبتا بالا را در پی دارد. این چنین فولادهایی در صنایع پالایش نفت کاربرد پیدا کردند. سایر فولاد های کم کربن که در این حوزه کاری استفاده می شوند دارای درصد کم کروم0.5-2.5 %  همراه با درصد کمی از مولیبدن هستند.البته مقاومت خوبی در برابر خزش در دماهای متوسط دارند و درصورتیکه درصد کربنشان از 0.3 فراتر نرود، قابلیت جوشکاری خوبی نیز خواهند داشت.

عنصر اصلی در فولادهای آلیاژی کم کروم نیکل است. این نوع فولادها دارای 1% کروم و 1.5-4.5 %  نیکل هستند.فولادهای با نیکل پایین و کربن 0.3 % در روغن سرد می شوند ولی کوئتچ فولادهای با 1.2 % Cr  و 4 % Ni در هوا حتی در مقاطع بزرگ سختی بالایی را در پی دارد.در شرایط کوئنچ و تمپر،فولادهای نیکل-کروم استحکام خوبی داشته وبرای تولید مقاطع بزرگ مناسب هستند.برای کاهش حساسیت به تردی تمپر به ترکیب این فولادها مولیبدن اضافه می شود.

فولادهای نیکل – کروم و نیکل – کروم-مولیبدن برای کاربردهایی استفاده می شوند که نیاز به سختی سطحی باشد.بخاطر تمایل زیاد کروم با تشکیل کاربید ،سختی لایه سطحی را افزایش می دهد.فولادهای کربنی ساده برای کاربردهای سختی سطحی شونده Case Hardening مناسب نیستند چرا که با وجود سخت بودن سطح،ترد بوده و تمایل به جدا شدن Spall دارد.

بیشترین سختی در سطح را می توان در فولادهای نیتریده شونده حاوی کروم بدست آورد.کروم تمایل قوی به ترکیب با نیتروژن دارد.ازمشهورترین فولادهای این نوع،می توان به فولادهای نیتروآلوی با 1.5 % Cr و 1% Al اشاره کرد.فولاد با کاربرد زیاد در این سری ،فولاد حاوی 3% Cr و 0.5 % Mo می باشد.

کروم مقاومت به سایش فولادهای کربنی ساده را افزایش می دهد. موادی که دارای کروم هستند در صورتیکه صحیح آبکاری شوند(1%C,1.5 % Cr)دارای سختی سطحی بالا، اندازه دانه ریز و مقاومت سایشی بالایی خواهند داشت. این مواد را می توان قبل از آبکاری برای سهولت در ماشینکاری نرم کرد.فولادهای مشابه که در آب کوئنج می شوند، دارای سختی سطحی بسیار بالا و مرکز نرم خواهند بود.

مقادیر مشخصی از کروم در فولادهای قالب گرم موجود است و در فولادهای خاصی که برای این منظور استفــاده می شود، دارای 2 % C و 12 % Cr هستند. در این فولادها، کاربیدهای آزاد دیده می شوند که مقاومت سایشی را بالا می برند.این فولادها در حین حرارت دهی در محدوده 500-600 C سختی ثانویه از خود نشان می دهند.کیفیت بالای این نوع فولاد مربوط به حفظ شکل و پروفیل قالب است که مربوط به مقاومت عالی کاربید های کروم در برابر دکربوریزاسیون می شود.

فولاد های تندبر که حاوی تنگستن و مولیبدن با 1% V یا انواع پرکربن و پروانادیم هســـتند دارای درصـــــــــــدی از کروم (3.5-5.5 %)بوده تا کاربیدها در ریزساختار پایدار باشند.

کروم عنصری است که مصرف بیشتری در تولید فولادهای زنگ نزن دارد.در کل فولادهای زنگ نزن به سه دسته مارتنزیتی،آستنیتی و فریتی گروه بندی می شوند.اولین گروهیکه از این فولادها تولید شده ند ، فولادهای مارتنزیتی با 13 % کروم و 0.3 % کربن بودند.کروم عامل اصلی در افزایش مقاومت خوردگی این فولادها بوده و کربن یوتکتوئید را می کاهد. در شرایط آبکاری و برگشت،فولادهای با 13 % Cr دارای سختی 530 HB  خواهند بود.جوشکاری این فولادها باعث تردی آنها شده و نیاز به عملیات حرارتی بعدی خواهند داشت.قابلیت فورج پذیری در محدوده دمایی 1100-900 C خوب بوده بعد از آنیل در دمـای 750 C قابلیت ماشینکاری خواهد داشت.هرچند که خواص پرسکاری سرد آنها ضعیف است.

در فولاد مشابه با 13 % Cr و تنها با کربن 0.1 % ،سختی پذیری کمتر بوده و در شرایط آبکاری در روغن و بعد از تمپر کامل، سختی 150 HB خواهد داشت.این نوع فولادهای زنگ نزن در تیغه های توربین استفاده می شوند.با عملیات حرارتی این نوع فولادها برای جلوگیری از تردی ، می توان جوشکاری را انجام داد.فورج پذیری آنها بصورت گرم بوده ولی خواص پرسکاری سردآنها کم است.

با افزایش درصد کروم ،مقاومت خوردگی فولادهای مارتنزیتی بیشتر می شود اما در درصدهای 17 % Cr و کربن 0.07 درصد ،بدلیل اینکه کروم فریت زاست، سختی پذیری کمتری خواهند داشت.این نوع فولادها در گروه فولادهای فریتی قرار می گیرند.علیرغم اینکه جوشکاری وخواص پرسکاری سرد آنها خوب است، اما جوشکاری آنها را ترد می کند.افزودن 2.5 درصد نیکل بهمراه افزایش درصد کربن تا 0.15 درصد ، باعث افزایش سختی پذیری فولاد بدلیل پایداری بیشتر آستنیت می شود. این نوع فولادها کاربرد وسیعی بعنوان شیر در صنایع شیمیایی دارند.

فولاد با درصد کربن 0.1 %  ویا کمتر و کروم بالای 20 %  فریتی بوده ولذا قابلیت سختی پذیری ندارند.درصد کروم بالا باعث مقاوم شدن فولاد در برابر اسیدهای اکسید کننده و اسید نیتریک می شود وخاصیت مهم دیگر که در حضور کروم بالا می توان بدان دست یافت ، مقاومت خوب در برابر اکسیداسیون و کنده شدن سطحی در دماهای بالا می باشد.

برای کار در دماهای بالا، فولادهای با 20-27% کروم مناسب هستند. فولاد با 27 % Cr را می توان در 1000 C نیز استفاده کرد. اگر چه در این دما خواص مکانیکی این فولادها پایین است. این نوع فولاد در اتمسفرهای گوگرد دار نیز قابل استفاده هستند.

افزودن نیکل به ترکیب فولادهای کروم بالا باعث افزایش مقاومت خوردگی ، مقاومت اکسیداسیون وپوسته برداری در دماهای بالا می شود.فولاد کم کربن با 18% Cr-8% Ni در حین سرد کردن تا دمای زیر دمای اتاق کاملا آستنیتی بوده و لذا با کوئنچ نمی توان سخت کاری روی آنها انجام داد. تنها راه افزایش استحکام این نوع فولادها انجام کار سرد است.نرمترین حالت این فولادها وقتی است که در دمای 1050-1100 C عملیات حرارتی شوند.مقاومت خوردگی در اسیدهای غیراکسیدی مثل اسید سولفریک ،اسید هیدروکلریک زیاد بوده و با افزودن 3% Mo  بالاخص همراه درصدی از مس مشابه ، مقاومت خوردگی را نیز افزایش می دهد.

اعتقاد بر اینست که علت اصلی محافظ بودن فولادهای زنگ نزن، وجود فیلم اکسیدی بسیار نازک در سطح فولاد است که این فیلم در اولین تماس فولاد با محیط تشکیل می شود.این فیلم بقدری نازک است که اصلا دیده نمی شود.و در آب و بسیاری از محیط ها قابل حل نمی باشد.

با حرارت دادن فولاد 18/8 در محدوده دمایی 650-850 C مقاومت به شیمیایی در مرز دانه شدیدا کاهش می یابد.این چنین حالتی در مناطق HAZ  بسیار خطرناک است و ناشی از خالی شدن مناطق مجاور مرزدانه از کروم است.که در این دما کاربید کروم رسوب می کند.وقتی کربن 0.04-0.05 % باشد این افت مقاومت خوردگی زیاد خواهد بود.برای حذف و یا کمتر کردن این حالت ، بهتر است درصد کربن حداکثر 0.03 % باشد بطوریکه کاربید کمتری تشکیل شود یا عنصری اضافه کنیم که تمایل به ترکیب آن با کربن نسبت به کروم بسیار بیشتر باشد تا کاربید کروم تشکیل نشود و کروم در محلول جامد باقی بماند.

فولاد آستنیتی کروم-نیکل در دماهای بالا استحکام خوبی داردولی با این وجود برای بهتر کردن کارآیی  آن  عناصر دیگر اضافه شود.به عنوان مثال ،فولاد 18 % Cr  و 12 % Ni  همراه با نیوبیوم دردماهای بین 600-650 C مقاومت خزشی خوبی دارد.برای کاربردهای کمی بالاتر از این دما ، افزودن عناصری چون کبالت، تنگستن و مولیبدن لازم است. ولی اگر محـــــــــدوده دمایی 750-800 C  باشد،مواد پایه کبالتی و یا نیکلی گزینه بهتری خواهند بود.

درصدهای بالای کروم و نیکل باعث افزایش مقاومت اکسیداسیون در دماهای بالا می شود.در برخی کاربردها که نیاز به این است که مقاومت پوسته برداری خوبی نیز داشته باشیم،درصد سیلیس بالا بهمراه مولیبدن انتخاب می شود.یک ترکیب نمونه از این نوع فولاد 19% Cr,8% Ni, 3% W, 2 % Si   می باشد.اگر هدف این باشد که مقاومت حرارتی استثنایی داشته باشیم، آلیاژهای پایه نیکلی مثل Nichrome  با ترکیب 65 % Ni,15 % Cr ,20 % Fe  و یا آلیاژ نیکل – کروم 80/20  استفاده می شود.

در سالهای اخیر نوعی از فولادها آستنیتی معرفی شده اند که توسط فرآیند رسوب سختی کنترل می شوند.این فولادها هنگام سرد کردن از دمای بالای آستنیتی بوده و با عملیات در دمای زیر صفر و یا تمپر در دمای 750 C  آستنیت به مارتنزیت دگرگون می یابد.پیرسازی بعدی در دمای 450-600 C افزایش زیاد در خواص مکانیکی همراه با مقاومت خوردگی خوب در پی دارد.مثالی از این نوع فولادها 16 % Cr, 5% Ni , 2% Cu, 2 % Mo می باشد. مس و مولیبدن در بهبود مقاومت خوردگی سهیم هستند . مس مکانسیم رسوب سختی را بهبود می بخشد.

کروم کاربید ساز قوی بوده و در ترکیب چدنها تشکیل کاربیدهایی می دهد که خیلی پایدارتر از کاربید آهن هستند. اگر درصد کمی از کروم در فولاد باشد، تشکیل سمنتیت پرویوتکتوئید و پرلیت در هنگام سرد کردن آرام و عملیات حرارتی کند می شود.حداکثر کروم در چدنهای چکش خوار 0.03 %  می باشد.

در هر دو نوع چدنهای معمولی و آلیاژی ، درصدهای 0.5-1.0 %  کروم برای بهبود خواص مکانیکی بکار می رود.این درصد کروم با حذف فریت آزاد در ریزساختار باعث پایداری پرلیت می شود. در نتیجه استحکام و سختی افزایش می یابد.چدنهای با کروم بالا پایداری عالی دردماهای بالا دارند و برای کاربردهای دمای بالا معمولا دو گروه از چدنــــها بیشتر استفاده می شوند: چدنهای 17 % Cr   و چدنهای 30 % Cr  و بالاتر. هر دونوع از چدنها مقاومت حرارتی خوبی دارند اما دومی دارای مقاومت خوردگی بالاتری است.

کروم در بسیاری از چدنهای آلیاژی وجود دارد.وجود کروم در چدن نایهارد باعث تبدیل این چدن به چدن سفید می شود.در چدنهای Niresist  و Nicrosil  تقریبا 1.5 درصد کروم می باشند تا خاصیت مقاومت خوردگی و پوسته برداری ارتقاء یابد و زمینه آستنیتی تشکیل شود. با این وجود بدلیل اینکه وجود مقادیر زیاد کاربید چندان مطلوب نمی باشد، مقدار کروم در این چدنها محدود می شود.


دسته بندی :

اثر فسفر در فولادها و چدنها

فسفر عنصر ناخواسته اي است كه در تركيب هر عنصري وجود دارد.ساختمان مكعبي شكل و نقطه ذوب 45 C دارد. وزن اتمي آن 31 است. فسفر تمايل قوي به تركيب  با اكسيژن داشته و بايد از رطوبت و اكسيژن محافظت شود. براي افزودن به مذاب آهن ،از فروفسفاتهاي با 20% فسفر استفاده مي شود.

در حالت جامد ،آهن و فسفر تشكيل Fe3P مي دهند. فسفر در دماي اتاق در حدود 0.1% حل مي شود و فسفر اضافي در زمينه باقي مي ماند. در كل فسفر فريت زاي ضعيفي است . لذا با توجه به دصد كم فسفر در فولاد ،تاثير اين عنصر بسيار ناچيز است.

در فولادسازي با روش شمش ريزي ، فسفر عنصر ناخواسته اي است.فسفر جدايش در ريزساختار را تشديد مي دهد. مناطق حاوي فسفر مناطقي هستند كه در آخرين مرحله انجماد ، منجمد مي شود و باعث مي شودكه كربن از اين مناطق پس زده شود.در نتيجه بعد از انجماد،اين مناطق سمنتيت كمتري داشته و در عوض فريت بيشتري خواهد داشت.به اين پديده Ghost bond اطلاق مي شود.هم چنين به خاطر ضريب ديفوزيون پايين اين عنصر،امكان يكنواخت كردن ريزساختار بسيار مشكل است.

در عمليات حرارتي فولادها ،فسفر چقرمگي را مي كاهد.بهمين خاطر درصد فسفر بايد از 0.04% فراتر نرود.فسفر سختي پذيري را مي افزايد فلذا كاهش چقرمگي و افزايش تردي را در پي خواهد داشت.فسفر با تشكيل محلول جامد جانشيني، تمايل بالقوه اي در افزايش استحكام فريت دارد.

اثر ترد كنندگي به ميزان كربن فولاد بستگي دارد. در گريدهاي پر كربن ،تاثير فسفر معكوس مي شود.در بسياري از فولادهاي كم كربن درصد فسفر مي تواند در محدوده 0.04-0.15 %  باشد. در فولادهاي HSLA كه كربن كمتري دارند، جهت افزايش استحكام و مقاومت خوردگي از فسفربا درصد بالا  استفاده مي كنند.فولادهاي بسمر به خاطر ماهيت توليد داراي فسفر زيادي هستند. تردي حاصل از فسفر با افزايش كربن ،دماي آبكاري ،اندازه دانه و كاهش درصد تغيير شكل در فورج افزايش مي يابد.اين تردي بصورت سردشكنندگي و حساس شدن در تنش هاي ضربه اي ظاهر مي شود.

فسفر اندازه دانه های آهن را افزایش داده و لذا باعث تشکیل ترکیبات حجیم و نامطلوب می شود. افزودن فسفر به فولادهای کم کربن ،ازدیاد استحکام و مقاومت خوردگی را در پی دارد. هم چنین قابلیت ماشینکاری فولادهای خوش تراش را بهبود می بخشد.تا 0.07 % به فولادهای کم کربن خاص با 0.3 % مس افزوده شده تا مقاومت اتمسفری آنها بسیار خوب شود. در چدن ، نقطه انجماد اولیه چدن را کاهش داده فلذا سیالیت و قابلیت ریخته گری آن را می افزاید.


دسته بندی :

تاریخچه جوشکاری



بانک اطلاعات مواد ایران


 

تاریخچه جوشکاری

چون احتیاجات بشر ، اتصال و جوش در همه موارد را خواستار بوده است، لذا مثلاً از رومی‌های قدیم ، فردی به نام "پلینی" از لحیم به نام آرژانتاریم وترناریم استفاده می‌کرد که دارای مقداری مساوی قلع و سرب بود و ترنایم دارای دو قسمت سرب و یک قسمت قلع بود که هنوز هم با پرکنندگی مورد استفاده قرار می‌گیرند.

دقت و
ترکیبات شیمیایی و دستگاههای متداول طلاسازی از قدیم‌الایام در جواهرات با چسباندن ذرات ریز طلا بر روی سطح آن با استفاده از مخلوط نمک و مس و صمغ آلی که با حرارت ، صمغ را کربونیزه نموده ، نمک مس را به مس احیاء می‌کنند و با درست کردن آلیاژ طلا ، ذرات ریز طلا را جوش می‌دهند و تاریخچه ای به شرح زیر دارند:


  • "برناندوز" روسی در 1886 ، قوس جوشکاری را مورد استفاده قرار داد.
  • "موسیان" در 1881 قوس کربنی را برای ذوب فلزات مورد استفاده قرار داد.
  • "اسلاویانوف" الکترودهای قابل مصرف را در جوشکاری بکار گرفت.
  • "ژول" در 1856 به فکر جوشکاری مقاومتی افتاد.
  • "لوشاتلیه در 1895 لوله اکسی‌استیلن__ را کشف و معرفی کرد.
  • "الیهو تامسون" آمریکائی از جوشکاری مقاومتی در سال 7-1876 استفاده کرد.br>

چون علم جوشکاری همراه با گنج تخصصی بود، یعنی هر جوشکار ماهر در طی تاریخ درآمد زیادی داشت، سبب شد که اسرار خود را از یکدیگر مخفی نمایند. مثلاً هنوز هم در مورد لحیم آلومینیوم و آلیاژ ، آن را از یکدیگر مخفی نگه می‌دارند. در جریان جنگهای جهانی اول و دوم جوشکاری پیشرفت زیادی کرد. احتیاجات بشر به اتصالات مدرن – سبک – محکم و مقاوم در سالهای اخیر و مخصوصاً بیست سال اخیر ، سبب توسعه سریع این فن گردید و سرمایه‌گذاری‌های عظیم چه از طرف دولتها و چه صنایع نظامی و تخصصی در این مورد اعمال گردید و مخصوصاً رقابت‌های انسانها در علوم هسته‌ای ( که فقط برای صلح باید باشد ) ، یکی دیگر از علل پیشرفت فوق سریع این فن در چند ده سال اخیر شد که به علم جوشکاری تبدیل گردید.

گروههای مختلف جوشکاری

  1. لحیم کاری
  2. جوشکاری فشاری و پرسی
  3. جوشکاری ذوبی
  4. جوشکاری زرد

چون مواد و فلزات تشکیل‌دهنده و جوش‌دهنده و گیرنده از لحاظ متالوژیکی بایستی دارای خصوصیات مناسب باشند، بنابراین جوشکاری از لحاظ متالوژیکی بایستی مورد توجه قرار گیرد که آیا قابلیت متالوژی و فیزیکی جوشکاری دو قطعه مشخص است؟ پس از قابلیت متالوژی ، آیا قطعه ای را که ایجاد می‌کنیم، از لحاظ مکانیکی قابل کاربرد و سالم است؟

آیا می‌توانیم امکانات و وسائل برای نیازها و شرایط مخصوص این جوشکاری ، مثلاً
گاز و دستگاه را ایجاد نمائیم و بر فرض ، ایجاد نیرو در درجه حرارت بالا یا ضربه زدن در درجه حرارت پایین ممکن باشد؟ زیرا استانداردهای مکانیکی و مهندسی و صنعتی جوشکاری باید در تمام این موارد رعایت شود تا جوش بدون شکستگی و تخلخل و یا نفوذ سرباره و غیره انجام گیرد.

تکرار می‌شود در جوشکاری تخصصی و اصولاً تمام انواع جوش ، قابلیت جوش خوردن فلزات را باید دقیقاً دانست. در مورد مواد واسطه و الکترود و پودر جوش ، باید دقت کافی نمود. محیط لازم قبل و در حین جوشکاری و پس از جوشکاری را مثلاً در مورد چدن ، باید بوجود آورد.

گازهای دستگاههای مناسب و انتخاب فلزات مناسب از لحاظ ذوب در کوره ذوب آهن و بعد در حین جوشکاری از لحاظ جلوگیری از صدمه گاز - آتش و مشعل و برق و هوای محیط و وضعیت جسمانی و زندگی جوشکار ، خود نکات اساسی دیگر هستند که مشکلات جوشکاری می‌باشند.

مشکلات و گرفتاریهای صنعت جوشکاری

جوشکاری در حقیقت ایجاد کارخانه ذوب آهن و فلزات در مساحتی حداکثر 2×2 متر و نقطه حساس جوشکاری چند سانتیمتر است، زیرا همان درجه حرارت کارخانه ذوب آهن در محل جوشکاری در یک نقطه ایجاد می‌گردد. مسلم است که چنین کار عظیمی احتیاج به ابتکار و تخصص و مواد و متخصص و وسائل مدرن دارد تا بتوان از این ذوب آهن چند سانتیمتری استفاده صحیح نمود.

شاید اضافه گوئی نباشد که در هیچیک از رشته‌های فنی تا این اندازه احتیاج به سرمایه‌گذاری و رعایت جوانب فنی و غیر فنی ضروری و لازم نباشد.

عوارض و سوانح ناشی از عوامل فیزیکی مربوط به جوشکاری

در موقع جوشکاری ، از عوامل فیزیکی مورد تاثیر یا حاصل از عمل جوشکاری ممکن است خطراتی متوجه جوشکار شود که در:


  • دسته اول: برق گرفتگی
  • دسته دوم: سوختگی
  • دسته سوم: ورود اجسام خارجی به داخل چشم

را می‌توان نام برد.

برق گرفتگی و عوارض حاصل از تاثیرات جریان برق

مسلم است اگر نقصی در سیم‌کشی وسائل برقی که برای جوشکاری با برق بکار می‌روند، وجود داشته باشد یا جوشکار نکات ایمنی لازم مربوط به برق را مراعات ننماید، خطر برق‌گرفتگی برای او وجود خواهد داشت و چنانچه جوشکار در ارتفاع مشغول جوشکاری باشد، مخاطرات حاصله از سقوط و در نتیجه شوک - ضربه الکتریکی نیز بر ضایعات حاصل از برق‌گرفتگی افزوده خواهد شد.

نشانه‌های حاد و فوری برق‌گرفتگی از مور مور شدن و یا شوک خفیف تا شوک شدید و قطع تنفس و متزلزل شدن ضربان قلب و عاقبت به مرگ منجر می‌شود. هنگامی که برق‌گرفتگی ، ایجاد شوک نماید و شخص در ارتفاع مشغول کار است، خطر سقوط و افتادن از ارتفاع روی زمین و روی وسایل و ماشین و غیره ، باعث پیدا شدن جراحات شدید شده ، وضع مصدوم را وخیم خواهد ساخت. بنابراین پیشنهاد می‌شود حتی‌المقدور جوشکاری را در سطح پایین انجام داد.

شدت ضایعات و مخاطرات حاصل از برق‌گرفتگی ، بستگی به عوامل زیر دارند:


  • نوع جریان برق: اصولاً در هر ولتاژی ، جریان برق متناوب AC ، خطرناکتر از جریان برق DC مستقیم می‌باشد و یا به عبارت دیگر ، خطر شوک الکتریکی در جریان متناوب بیشتر است. در حالیکه خطر سوختگی در جریان مستقیم نیز بیشتر است.

  • تاثیر ولتاژ: شدت شوک الکتریکی حاصل از برق گرفتگی ، بستگی به میزان ولتاژ برق مربوط به آن دارد و هرچه ولتاژ بیشتر باشد، شدت شوک حاصله بیشتر خواهد بود. در هر صورت ولتاژ بین 200 تا 250 ولت که ولتاژ معمولی برق شهر است، خطرناک بوده ، اغلب ضایعات شدید بوجود آورده ، ممکن است سبب مرگ شود.

  • شدت جریان: شدت جریان 15 تا 20 میلی‌آمپر با فرکانس HZ 50 ولتاژ بالا ممکن است باعث چسبیدن دست مصدوم به سیم برق شده ، مانع رهائی وی گردد. این امر ممکن است تا موقع رسیدن نجات‌دهنده ادامه یابد. در این جریان ممکن است ضایعات کشنده ای ایجاد شود.

  • فرکانس: در تواتر بین HZ 50 تا HZ 80 هرتز شوک یا ضربه الکتریکی ممکن است بوجود آید. ولی در فرکانس‌های بالا بین 30000 تا 100000 هرتز ، خطر کمتری وجود دارد، زیرا بوسیله پرتاب ، شخص را از منبع خطر دور می‌کند.

  • مقاومت بدن انسان: مقاومت بدن انسان بین 500 تا 50 متغیر است ( اهم ). هر چه مقاومت در سر راه تماس منبع الکتریک با بدن ( پوست خشک – ضخامت کف پا ) بیشتر باشد، خطر شوک وارده کمتر است و یا بالعکس.

  • مدت تماس: تماس برق با بدن در مدت زمان بین 1 تا 3 ثانیه ممکن است توقف قلب و فوت مصدوم را همراه داشته باشد. در هر صورت چنانچه شخصی دچار برق گرفتگی شود، از ضایعات و عوارض ذکر شده در بالا جان سالم بدر برد. معمولاً بهبود کامل می‌یابد و عوارض ، نادر می‌باشد.


 

بانک اطلاعات مواد ایران


 

مسائل مهم جوشکاری

تربیت متخصص و کاردان و کارشناس

جوشکاری ، یکی از رشته‌های پرهزینه در صنعت و آموزش ابتدائی و عالی است. انتخاب افراد و جوانان در هر سن و مدارج تحصیلی و کارخانه‌ای ، با داشتن قدرت تحمل کار با آتش ، قدرت تحمل خطرات و آموزش تخصصی به این جوانان بسیار مشکل است. زیرا سرمایه‌های عظیم آموزشی احتیاج دارد تا یک متخصص به تمام معنی یا یک مهندس جوشکار واقعی تربیت شود.

تهیه ماشین‌آلات مخصوص

تهیه ماشین‌آلات مدرن و مفصل جوشکاری احتیاج به بودجه‌های عظیم دارد تا بتوان از انواع ماشین‌آلات مدرن بهره‌گیری نمود، مخصوصاً در آموزش که باید همه جانبه باشد. بعضی اوقات تمام وسایل کارخانجات شهر و مراکز آموزشی ، کافی برای ارائه کل تخصص نمی‌باشن. و اشکال‌تراشی و نبودن بودجه و خرید و کمک به ساخت نیز گرفتاری دیگری است.

رعایت نکات ایمنی

رعایت نکات ایمنی و تخصصی ایمنی ، خود یکی دیگر از مشکلات عظیم جوشکاری است، بطوری‌که فرضاً انفجار یک کپسول مانند یک بمب می‌تواند جان صدها نفر را به خطر اندازد، در حالیکه مثلاً در کارگاه تراش و ریخته گری ،خطرها تا این حد بالا نیستند و کوچکترین بوی گاز ناشی از عدم اتصالات صحیح و اصولی ، ممکن است جان عده ای را به خطر اندازد. همان طوریکه تربیت متخصص ، احتیاج به بودجه‌های عظیم آموزشی برای خرید وسائل و کتب بطور همزمان دارد، هزینه های دیگر جوشکاری جهت جلوگیری از هر نوع انفجار و احتراق در کارگاهها و صدمه به بدن و چشم جوشکار و افراد حاضر در کارگاه می‌باشد.

بدین جهت جوشکاری را رشته ای پر خرج نام نهاده‌اند. مسلم است که این مخارج عظیم در استفاده از اتصالات جوش حذف خواهند شد. یعنی اینکه اتصالات پر خرج و مفصل پیچ و پرچ وقتی با جوشکاری جایگزین شوند، مخارج عظیم تشکیلات را در مدت کوتاهی تامین خواهند کرد.

هدف جوشکاری و برشکاری

بریدن قطعات ماشینی به ضخامتهای زیاد ، یکی از وظایف مهم برشکاری است. بطور کلی ، اتصال قطعات مختلف از یک نوع فلز یا انواع فلزات و آلیآژها و بالا بردن استحکام و سرعت عملیات و کاهش هزینه‌ها از مهمترین اهداف جوشکاری است.


دسته بندی : جوشکاری

رشته مهندسي مواد

رشته مهندسي مواد

 Materials Engineering

ماهيت كار

مهندسين مواد دست اندر كار استخراج ، توسعه دادن ، عمل آوردن ، و امتحان كردن موادي هستند كه در توليدفراورده هاي گوناگون ، از چيپهاي كامپيوتري و صفحات تلوزيون گرفته تا چوب گلف به كار ميروند.آنها با فلزات ، سراميكها، مواد پلاستيكي ، نيمه هاديها ، و تركيباتي از مواد كه به آنها كامپوزيت (مواد مركب) گويند براي بوجود آوردن موادي كه داراي خصوصيات خاص مكانيكي ، الكتريكي و شيميائي باشند كار ميكنند. از جمله كارهاي آنها انتخاب مواد براي كاربردهاي جديد نيز ميباشد.

امروزه پيشرفتهاي جديدي در مهندسي مواد حاصل شده كه به مهندسين اين امكان را ميدهد تا مواد را به روشهاي گوناگوني به كار برند. بعنوان مثال ، مهندسين مواد با استفاده از فرايندهاي پيشرفته ، الكترونها ، نوترونها به توانائي توليد مواد در سطح اتمي دست يافته اند و نيز قادر به شبيه سازي خصوصيات مواد و اجزاي آنها توسط رايانه شده اند.

مهندسين مواد متخصص در فلزات را مهندسين فلزات و متخصص در سراميك را مهندسين سراميك گويند. اكثريت مهندسين فلزات(متالوژي) در يكي از سه شاخه اصلي يعني استخراج يا شيميائي ، فيزيكي و يا فرايند كار ميكنند.

متالوژيستهاي استخراج با جدا كردن فلزات ار سنگهاي معدني و پالايش وآلياژ سازي آنها براي بدست آوردن فلزات مفيد سر و كار دارند. متالوژيستهاي فيزيكي طبيعت ، ساختار و خصوصيات فيزيكي فلزات و آلياژهاي آنها را بررسي كرده و در روشهاي تبديل آنها به محصولات نهائي مورد استفاده قرارميدهند. متالوژيستهاي فرايند ، روشهاي فلزكاري مانند ريخته گري ، كوبيدن ، گرد كردن و شكل دهي را بوجود آورده و توسعه ميدهند. مهندسين سراميك مواد سراميكي را توليد كرده و روشهاي تبديل آنها را به فراورده هاي مفيد ايجاد ميكنند. سراميك به تمامي مواد غير آلي و غير فلزي كه عموما در روند تبديل نياز به حرارتهاي بالا دارند گفته مي شود .مهندسين سراميك بر روي موادي گوناگون از شيشه آلات گرفته تا قطعات اتومبيل و هواپيما ،‌ خطوط ارتباطي فيبر نوري ، كف پوش و عايقهاي الكتريكي كار مي كنند.

فرصتهاي شغلي

از آنجائيكه مواد ، واحدهاي سازنده تمامي توليدات مي باشند ، مهندسين مواد در طيف وسيعي از صنايع توليد كننده به كار مشغولند. درصد بالائي از اين مهندسين در صنايع مربوط به فلز ، قطعات الكترونيكي ، وسائل حمل و نقل تجهيزات صنعتي كارمي كنند.

چشم انداز شغلي

نياز به مهندسين مواد در كار توليد مواد جديد براي مواد الكترونيكي وپلاستيكي رو به افزايش است. در كشور آمريكا نياز به اين رشته در صنايع فلزي پايه و شيشه كاهش يافته است.

ميزان درآمد متوسط

درآمد ساليانه دررشته ها و صنايع مختلف متفاوت است. در ايالات متحده اين ميزان برابر 59100 دلار در سال مي باشد.


دسته بندی :

متالورژی پودر

متالورژی پودر روشی برای ساخت و تولید قطعات فلزی و سرامیک است که اساس آن بر فشردن پودر مواد به شکل مورد نظر و تف‌جوشی آن است. تف جوشی در درجه حرارتی زیر نقطه ذوب صورت می‌‌پذیرد.

متالورژی پودر بخشی کوچک ولی بسیار مهم از صنایع متالورژی می‌‌باشد. اولین کاربرد متالورژی پودر برای تولید پلاتین با دانسیته کامل بود که در قرن ۱۹ میلادی صورت گرفت چون در آن زمان امکان ذوب پلاتین به دلیل نقطه ذوب بالا وجود نداشت. در اوایل قرن بیستم فلزهای دیر گدازی مانند تنگستن، مولیبدن توسط روش متالورژی پودر شکل داده شدند. کاربیدهای سمانیت و یاتاقانهای برنزی متخلخل نسل بعدی قطعات متالورژی پودر بودند. به این صورت قطعات متالورژی پودر در انواع صنایع مانند لوازم خانگی، اسباب بازی سازی و الکترونیک کاربرد پیدا نمود. آخرین کاربردهای قطعات متالورژی پودر در صنایع خودرو سازی می‌‌بود که موازی با رشد صنایع اتومبیل سازی رشد نمود به صورتی که امروزه بقای صنعت متالورژی پودر در کشورهای صنعتی بسیار وابسته به صنعت خودرو سازی می‌‌باشد.

در سال‌های ۱۹۵۰-۱۹۶۰ روشهای نوین مانند فُرج پودر و ایزو استالیک گرم در صنعت متالورژی پودر بکار گرفته شد. این روشها با تولید قطعات با دانسیته بالا توان رقابی قطعات متالورژی پودر را افزایش دادند.

گرچه روش متالورژی پودر امکانات ویژه‌ای را جهت تولید بعضی قطعات خاص فراهم ساخته است، که تولید آنها از طریق روشهای دیگر غیر ممکن یا بسیار مشکل می‌‌باشد ولی زمینه‌های که باعث فراگیر شدن استفاده از این روش گردیده است، عبارتند از :

زمینه‌های اقتصادی
بهره‌وری انرژی
انطباق زیست محیطی
ضایعات بسیار پائین
متالورژی پودر تکنولوژیی است، پویا. در طول سالها عوامل موثر بر این فن آوری بهبود داده شده‌اند به علاوه، تولید آلیاژهایی جدید و مستحکمتر و فرآیندهای تولید قطعات با دانسیته بالا مانند (Warm compaction، ایزو استالیک گرم، فرج پودر، extrusion، Powders rolling، Incretion mounding Powders ) همراه با کنترل عالی بر زیر ساختار هم چنین خصوصیت ذاتی فن آوری متالورژی پودر در تولید مواد مرکب، امکان ساخت محصولاتی از مواد ویژه و سنتی را در طیف وسیع از خواص با بالاترین کیفیت فراهم ساخته است.

با وجود تمامی مزیتهای متالورژی پودر، محدودیت این روش در اندازه و شکل قطعات تولیدی و هم چنین گران بودن ابزار و تجهیزات تولید که ظرفیتهای تولید کم را غیر اقتصادی می‌‌نماید، از نقاط ضعف این فن آوری در رقابت با دیگر فرآیندهای تولید است. توجیه استفاده از روش متالورژی پودر بر اساس تیراژ تولید می‌باشد. این امر در استفاده از متالورژی پودر در صنایع اتومبیل سازی از اهمیت ویژه‌ای برخوردار است.

با وجود اینکه از نظر تاریخی متالوژی پودر از قدیمی‌ترین روشهای شکل دادن فلزات است، اما تولید در مقیاس تجارتی با این روش، از جدیدترین راههای تولید قطعات فلزی است. در دوران باستان از روشهای متالوژی پودر برای شکل دادن فلزاتی با نقطه ذوب بالاتر از آنچه در آن زمان داشتند، استفاده می‌شد. اولین بار در اوایل قرن نوزدهم بود که پودر فلزات با روشی مشابه آنچه امروزه بکار می‌رود، با متراکم نمودن به صورت یکپارچه در آورده شد.

متالوژی پودر فرایند قالب گیری قطعات فلزی از پودر فلز توسط اعمال فشارهای بالا می‌باشد. پس از عمل فشردن و تراکم پودرهای فلزی، عمل تف جوشی در دمای بالا در یک اتمسفر کنترل شده، انجام پذیرفته که در آن فلز متراکم، جوش خورده و به صورت ساختمان همگن محکمی ‌پیوند می‌خورد.

دسته بندی : متالورژی پودر

گرافیت یا مس

در دهه 1960 مس تقریبا 90 درصد مواد الكترودهای مصرفی اسپارك را تشكیل می داد و گرافیت تنها 10 درصد مصرف را شامل می شد.اما امروزه این درصد مصرف كاملا برعكس شده است.علت این تغییر در صنعت EDM (اسپارك)مزیت های گرافیت نسبت به مس است.
قابلیت ماشینكاری: قابلیت ماشینكاری تقریبا مهمترین عامل در تعیین جنس الكترود است.دربعضی از شرایط ماشینكاری مس بیش از 5 برابر ازماشینكاری گرافیت زمان می برد.چون مس تمایل به پوسته شدن ‌،ماسیدگی و پارگی دارد و نیازمند مقداری كار دست برای برداشتن پلیسه هامی باشد.از آنجاییكه مس تمایل به چسبندگی دارد،وقتیكه ماشینكاری ریب های باریك و قسمت های ظریف مدنظرباشد مس انتخاب خوبی نیست.همچنین مس مقاومت خوبی درمقابل نیروهای ماشینكاری و حرارت حاصل از اصطكاك نداشته و درحمل و نقل نیز ضربه پذیراست. اماگرافیت همانطوركه ذكرشد تا پنج برابر سریعترماشینكاری شده و نیازی به عملیات اضافی همچون پلیسه گیری ندارد.ضمن اینكه بخاطر داشتن جرم مخصوص بسیار پایین (1.8-1.6 ) سبك بوده و حمل و نقل آن راحت است.
نرخ براده برداری: MPR درعرف به سرعت براده برداری شناخته شده و منظوراز آن سرعت براده برداری از قالب یا جسمی كه بر روی آن ماشینكاری انجام می شود است.از آنجاییكه مس هدایت حرارتی بالایی دارد گرمای حاصل از فرآیند اسپارك به سرعت در الكترود پخش می شود.درنتیجه دمای الكترود بالا رفته و مقاومت الكتریكی آن افزایش می یابد بهمین علت انرژی بیشتری برای اسپارك لازم است.ازطرف دیگر انتقال حرارت گرافیت پایین تر از مس بوده و درمقابل تغییرات مقاومت الكتریكی پایدارتراست.درنتیجه انرژی لازم برای ایجاد جرقه اسپارك نسبت به مس كمتر است.این اختلاف در انتقال حرارت یك مزیت گرافیت به مس است خصوصا هنگامیكه نرخ برداشت مواد زیادی مدنظر باشد.
خوردگی الكترود: یكی از نگرانی های هراپراتور اسپارك خوردگی الكترود است ، زیرا خوردگی بیش از حد الكترود منجربه ساخت الكترود جایگزین میشود.باپارامترهای اسپارك مناسب میزان خوردگی گرافیت 1 درصد عمق براده برداری بوده درصورتیكه این درصد برای مس بیشتر است.نقطه ذوب این دو ماده بازگوكننده میزان خوردگی آنها درعملیات اسپارك است.نقطه ذوب مس ۱۰۰۰-1100 درجه می باشد كه در رده فلزات درجه پایینی محسوب میشود.برای رسیدن به حداكثرسرعت براده برداری نیاز به افزایش آمپربوده و الكترود مسی بسادگی نمی تواند گرمای تولید شده را تحمل كند.گرافیت گرچه نقطه ذوب ندارد اما در 3500 درجه تصعید میشود و با این نقطه مقاومت در برابر حرارت بالا میتوان با آمپر و سرعت بیشتری براده برداری نمود.
كیفیت سطح: اگرچه مس كیفیت سطح خوبی می دهد اما به تنهایی نمی تواند كاستی های عوامل تعیین كننده ای مانند زمان ماشینكاری راجبران كند.باگرافیت دانه ریز پرداخت سطح مشابه مس باسرعت بیشتر و خوردگی الكترود كمتر می توان بدست آورد.صافی سطح Ra۷ با الگوی اوربیتالی كه نیازی به پولیش دستی ندارد به راحتی قابل حصول است. علاوه بر مطالب ذكرشده از بحث مهم مالی نیز نمی توان بسادگی گذشت.گرافیت دارای جرم مخصوص 7/1-5/1 (بسته به میزان فشردگی ذرات آن)و مس دارای جرم مخصوص 9/8 می باشد.برای پی بردن به این مسئله كه كدامیك از این مواد جهت ساخت الكترود اسپارك بصرفه ترمی باشند این مطلب را با ذكریك مثال توضیح می دهیم:فرض را براین قرار می دهیم كه برای ساخت یك الكترود به یك بلوكه با ابعاد 100x۵۰x۵۰میلیمتر نیاز داریم:
وزن بلوكه مس 100x۵۰x۵۰x۸.۹/۱۰۰۰x۱۰۰۰=۲.۲۲۵ kg
وزن بلوكه گرافیت 100x۵۰x۵۰x۱.۶/۱۰۰۰x۱۰۰۰=۰.۴ kg
تا اینجای كار همه چیز به نفع گرافیت پیش می رود.یك بلوكه بسیار سبك و قابلیت حمل و نقل آسان.ولی وقتی قیمت هركیلو از این مواد را در اعداد بدست آمده ضرب كنیم داریم: (قیمت هركیلو از مواد بطور میانگین درنظرگرفته شده است)
مس 2.225x۶۰۰۰۰=۱۳۳۵۰۰ Rls گرافیت 0.4x۴۰۰۰۰۰= ۱۶۰۰۰۰ Rls
دراینجا به اختلافی جزئی خواهیم رسید كه ممكن است نظرها را نسبت به گرافیت كمی به گمراهی بكشاند اما وقتی هزینه های ماشینكاری را (درصورت استفاده از پیمانكار ارائه دهنده خدمات مثلا فرز CNC ) و یا حداقل زمان ماشینكاری (درصورت ساخت الكترود توسط خود شما)را در این معادله دخیل كنیم به اختلاف زمانی شاید تا 4 برابر در ماشینكاری بر روی مس برسیم.این مطلب را با ذكر یك مثال دیگر پی میگیریم. ساخت الكترود (فرضا با استفاده از فرز CNC وبامیانگین اجرت ساعتی ده هزارتومان) بر روی بلوكه های مثال قبل:
مس 12x۱۰۰۰۰۰=۱۲۰۰۰۰۰ Rls گرافیت 3x۱۰۰۰۰۰= ۳۰۰۰۰۰Rls
دراینجا می بینیم كه اختلاف بسیار زیادی بین این دو ایجاد شده و گرافیت با حداكثر امتیاز بر سكوی نخست می نشیند!! ضمن اینكه با توجه به ماندگاری و خوردگی كمتر الكترودهای گرافیتی نیاز به الكترود جدید حداقل به میزان 15-10 درصد كاهش می یابد كه بنوعی صرفه اقتصادی محسوب می شود. حال پس از پرداختن به مزیت های گرافیت بد نیست به ایرادات جزئی آن نیز اشاراتی داشته باشیم: تنوع گرافیت جامد بسیار زیاد بوده و هرنوعی از آن را نمی توان درجهت ساخت الكترود اسپارك استفاده نمود. امكان تشخیص گرافیت مناسب جهت ساخت الكترود بسیار مشكل بوده و دراغلب موارد فقط با ماشینكاری و اسپارك چند نمونه از آن می توان به كیفیت آن پی برد. ماشینكاری بر روی گرافیت با توجه به شكنندگی جزئی آن درابتدا كمی مشكل بوده،لیكن با رسیدن به سرعت دوران و پیشروی مناسب به سادگی كار باآن پی خواهید برد.(هرچند كه هرجنس جدیدی اعم از انواع فولاد،مس،آلومنیوم،برنج و .... نیز نیاز به تجربه و تعویض ابزار،پیشروی و سرعت دوران برای رسیدن به حالت ایده آل دارد. شركت بازرگانی و تجارت الكترونیك استوك ماشین با سابقه پنج ساله استفاده و فروش انواع گرافیت جامد، هم اكنون پس از آزمایشات بسیار و تستهای ماشینكاری و اسپارك با انواع دستگاههای EDM ایرانی و خارجی به نمونه ای از گرافیت، ساخت كشور آلمان، دست یافته كه حداكثر راحتی در ماشینكاری،كمترین خوردگی و بیشترین میزان پیشروی در اسپارك و حداكثر مقاومت در مقابل ضربه را دارا می باشد.این نوع گرافیت تاكنون مورد استفاده بیش از بیست شركت و كارگاه و برای ساخت الكترود حداقل پانصد قطعه خودروئی و غیرخودروئی قرارگرفته و میزان رضایت استفاده كنندگان آن طی نظرسنجی انجام شده طی یكسال گذشته بشرح ذیل می باشد:
راحتی درماشینكاری %98 - راحتی دراسپارك %91
كیفیت سطح ماشینكاری %100 - كیفیت سطح اسپارك %95
مقاومت درمقابل ضربه %92 - عدم خوردگی الكترود %98

خواهشمند است درصورت تمایل به استفاده از مشاوره رایگان و دریافت یك نمونه جهت تست به آدرس زیر مراجعه فرمایید:
http://stockmachine.blogfa.com/post-61.aspx

استفاده از گرافیت مایع در فرآیند تولید قطعات فورج
استفاده از روان كننده ها و باصطلاح (Lubrication) امروزه در اغلب صنایع مرسوم و ملزوم است.این نیاز در بعضی از صنایع مانند فورج بسیار فراگیرتر و غیر قابل چشم پوشی بنظرمی رسد.عملیات فورج در هر رده ای و برای تولید هرقطعه ای كه انجام پذیرد بدون استفاده از روان كننده ها تقریبا غیرممكن می نماید.بهتر است برای روشنتر شدن لزوم استفاده از روان كننده ها به فرآیند فورج نگاهی اجمالی داشته باشیم:
بیلت (مواد برش خورده جهت تولید قطعه) در كوره به دمایی درحدود ۱۰۰۰ درجه رسیده و پس از اكسیدزدائی بر روی قالب كه درحدود 200 درجه گرما دارد قرار میگیرد.پرس ،كه میزان تناژ آن به حجم و شكل قطعه بستگی دارد، بر روی بیلت ضربه وارد كرده و مواد گرم شده را به داخل حفره های قالب هدایت می كند. درهنگام ضرب زدن پرس كه بعضا ثانیه ای بیشتر بطول نمی انجامد اتفاقات زیادی بوقوع پیوسته است. قالب بر اثر جریان سریع مواد متحمل نیروی اصطكاك بسیار زیادی میشود. گرمای بیلت به همراه اصطكاك ایجاد شده و سرعت جریان مواد، قالب را دچارشوك حرارتی بسیار بالایی می نماید.پران نشدن به موقع قطعه و گیركردن آن درقالب زمان این شوك رابیشتر و اثرات مخرب بیشتری برجای میگذارد.این اثرات سو ء در صورت عدم استفاده از روانكار مناسب و تمهیدات پیشگیرانه بسادگی باعث شكستن قالب و ضررهای بسیار دیگر مانند قفل كردن پرس خواهد شد.
درپاره ای از شركت های كوچك و تولیدكنندگان قطعات غیرخودروئی دیده شده كه از روغن سوخته !! بجای گرافیت استفاده میشود كه البته نتیجه ای جز فرو بردن كارگاه در دودی غلیظ ندارد! گرافیت مایع كه برای استفاده می بایست آنرا به میزان اشاره شده توسط تولیدكننده آن با آب یا روغن مخلوط نمود، دارای مزایای بسیاری است كه به پاره ای ازآنها اشاره می كنیم:
1- جلوگیری از چسبیدگی قطعه به قالب
2- جلوگیری از ایجاد تنش های حرارتی درقالب و درنتیجه افزایش عمرقالب
3- بهبود كیفیت سطح قطعات
4- كم كردن اصطكاك و تسهیل جریان مواد درقالب
5- مقرون به صرفه بودن آن نسبت به سایرمواد با توجه به رقیق شدن آن با آب
6- مقاومت در برابر حرارت و عدم ایجاد دود موارد ذكر شده پاره ای از وظایف گرافیت مایع در فرآیند فورج بوده لیكن نوع و روش استفاده ازآن نیز پارامتری اساسی تلقی میشود.با توجه به تست نمونه های زیادی ازگرافیت های موجود در بازار ایران عواملی همچون وجود ناخالصی و نسبت رقیق شدن پایین (درحدود ده به یك ) بیشتر به چشم می آیند.
گرافیت مایع ارائه شده توسط شركت بازرگانی استوك ماشین ساخت كارخانه معتبر فوكس (FUCHS) آلمان و دارای كیفیت بسیار عالی می باشد. این محصول تاكنون توسط شركتهای معتبر تولید قطعات فورج همانند پارت سازان ،قطعات آهنگری خراسان ،مجتمع صنعتی هفتم تیر و ... مورد استفاده قرار گرفته و رضایت كامل از كیفیت آن اعلام شده است. بعنوان نمونه در تولید یك قطعه با نرم 5000 با استفاده از قالب پیش فرم ،با استفاده از این نوع گرافیت و با همان قالبها تعداد 12000 قطعه تولید شده و میزان تخریب قالب %50 دفعات گذشته تولید بوده است .ضمن اینكه گرافیت ارائه شده توسط شركت استوك ماشین به میزان بیست به یك با آب رقیق شده كه با توجه به سایر نمونه ها (ده به یك) ارزش ریالی آن دوبرابر سایر نمونه ها می باشد.هرچند كه قیمت هركیلو از آن با سایر نمونه ها تفاوت چندانی ندارد !!


دسته بندی : فلزات غیرآهنی

جوشکاری آلياژ AL-6XN


آلياژ AL-6XN يک فلز سوپر آستنيتی با مقاومت خوردگی بسيار عالی و ساختار پايدار تا دمای 540C ميباشد. مزيت ويژه اين فولاد مقاومت عالی آن در برابر خوردگی شياري٫ حفره ای شدن٫ خوردگی ناشی از کلرايد و ترک خوردگی تنشی (SCC) ميباشد که ميتواند جايگزين بسيار مناسبی برای فولادهای زنگ نزن در محيطهای خورنده و حاوی کلرايد باشد. اين آلياژ ابتدا برای مصارف دريايی توليد شد ولی اکنون در صنايع متفاوتی از جمله صنايع غذايی٫ دارويی و شيميايی مورد مصرف پيدا کرده است.

اين آلياژ در دمای ۶۵۰ تا 980C فاز چی (Chi Phase) (ترکيب کرم-آهن-موايبدن) در راستاس مرزدانه ها تشکيل شده و نواحی اطراف را از موليبدن و کرم فقير ميسازد. اين موضوع باعث ايجاد خوردگی بين دانه ای ميگردد. برای کاهش اين اثر به ترکيب اين آلياژ نيتروژن افزوده ميگردد تا اين تغيير فاز را کاهش داده و مقاومت خوردگی را بهبود بخشد. اين موضوع هنگام جوشکاری از اهميت بالايی برخوردار ميگردد و لذا برای جوشکاری بايد نکات خاصی را رعايت نمود.

نکات جوشکاری :
در جوشكاري لوله در سايت از رينگهاي جوشكاري با عناصرآلياژي بيشتر از فلز پايه استفاده ميشود. برای ديگر جوشکاريها ميتوان از رينگ و يا سيم جوشهای خاص استفاده نمود. فلز جوش بايد دارای موليبدن بيشتری نسبت به فلز پايه باشد تا کاهش موليبدن فلز پايه هنگام سرد شدن را جبران نمايد. معمولا سيم جوش حاوی ۹٪ موليبدن (آلياژ ۶۲۵) مناسب است٫ اما ميتوان از سيم جوشهای ديگر نيز استفاده کرد (جدول زير).

 

Welding Process Designations Consumables
Filler Metal
Alloy
Specifications Classifications
AWS Common Form AWS ASME AWS UNS
GTAW TIG Bare Welding
Rods and Wire
625
276
22
A5.14
A5.14
A5.14
SFA5.14
SFA5.14
SFA5.14
ERNiCrMo-3
ERNiCrMo-4
ERNiCrMo-10
N06625
N10276
N06022
GMAW MIG Bare Welding
Rods and Wire
625
276
22
A5.14
A5.14
A5.14
SFA5.14
SFA5.14
SFA5.14
ERNiCrMo-3
ERNiCrMo-4
ERNiCrMo-10
N06625
N10276
N06022
SMW Stick or
Covered
Electrodes
Coating Electrodes 112
276
22
A5.11
A5.11
A5.11
SFA5.11
SFA5.11
SFA5.11
ERNiCrMo-3
ERNiCrMo-4
ERNiCrMo-10
W86112
W80276
W86022



بايد از گاز خنثی بعنوان گاز تورچ و گاز محافظ استفاده کرد. هر دو گاز آرگون و هليوم قابل استفاده ميباشند اما استفاده از آرگون معمولتر است. ميتوان ۳ تا ۵٪ نيتروژن به گاز اضافه کرد تا جبران مقدار نيتروژن سوخته شده فلز پايه حين جوشکاری را جبران نمايد.
حرارت ورودی بايد تا جای ممکن کم باشد بطوريکه کمترين تاثير را بر منطقه جوش و HAZ گذاشته و تشکيل اکسيدهای رنگی اطراف جوش حداقل گردد. اکسيدهای تيره ايجاد شده روی سطح بايد با گرد اکسيد آلومينيوم و اسيد شويی برطرف شوند. درصورت عدم تميزکاری مناسب سطح و باقيماندن لايه های اکسيدی مقاومت به خوردگی کاهش ميابد.
فلز پايه نبايد پيشگرم گردد مگر در مواقعی که دمای قطعه کمتر از 10C باشد. درصورتيکه دمای قطعه زير نقطه شبنم باشد بايد آنرا به آرامی تا بالای نقطه شبنم گرم کرد و از نشست رطوبت روی سطح جلوگيری نمود.
جوشکاری بايد در ناحيه جوش استارت شود. درصورتيکه اين امر غير ممکن باشد بايد ناحيه قوس پس از انجام جوشکاری با سنگ زنی بطور کامل برداشته شود.


دسته بندی : جوشکاری

خواص آلومینیوم

وزن مخصوص كم:

یك متر مكعب آلومینیوم خالص 8/2827 كیلوگرم وزن دارد و یك متر مكعب از سنگین‌ترین آلیاژهای آلومینیوم (یعنی آلیاژهای حاوی مس و روی) دارای وزنی در حدود 2953 كیلوگرم است. حتی این سنگین‌ترین آلیاژ‌های آلومینیوم نیز حداقل 1978 كیلوگرم در هر متر كعب سبك‌تر از وزن هم حجم سایر فلزات ساختمانی (بجز منیزیم) است (جدول 1-1). مزیت این كم بودن وزن چیست؟ می‌توان این مزیت را بصورت زیر خلاصه نمود:
مزایای وزن مخصوص عبارتند از:
1- حمل و نقل ارزانتر: چه در مورد حمل و نقل كالاهای آلومینیومی و چه در مورد وسیله نقلیه ساخته شده از آلومینیوم.
2- ظرفیت بیشتر: امكان صرفه‌جویی در وزن ساختمان‌های آلومینیومی بخوبی در پایه‌ها و تاسیسات حفاری چاههای نفت دیده می‌شود. لوله‌های حفاری كه شافت مته حفاری نیز محسوب می‌گردد امروزه از آلومینیوم ساخته می‌شود. وزن كم این لوله خود می‌تواند ظرفیت دكل حفاری كه باید تمام وزن سیم مته را تحمل نماید دو برابر كند.
3- صرفه‌جویی در كار: بعلت سبكی كه به معنی نصب سریعتر و اقتصادی‌تر ساختمان‌ها، تعداد كمتر كارگر مورد نیاز و خستگی كمتر استفاده از وسایل آلومینیومی خانگی است.
4- ممان اینرسی كمتر: در نتیجه دانسیته آلومینیوم ممان اینرسی قطعات آلومینیومی كمتر می‌گردد. این كلمه نام علمی برای تمایل یك قطعه برای متوقف و یا در حالت یكنواخت ماندن مگر اینكه یك نیروی خارجی اعمال گردد می‌باشد. هر چه قطعه سنگین‌تر باشد ممان اینرسی آن بیشتر و كار بیشتری برای حركت دادن و یا متوقف كردن آن مورد نیاز است. ماشین‌كاری‌های سریع مدرن امروزی نیاز به موادی با ممان اینرسی كم دارد طوریكه كه بتوان بسرعت و با بازدهی خوب دستگاه را بكار انداخت و یا از كار باز داشت، این مطلب خصوصاً برای دستگاههای بسته‌بندی و ماشین‌های چاپ با قطعات دارای حركت متناوب صادق است.
5- تعداد قطعات بیشتر به ازای هر كیلو وزن: وزن كمتر بمعنی تعداد قطعات بیشتر به ازای هر كیلو وزن است. میخ، پیچ، مهره و واشر آلومینیومی را می‌توان به ازای واحد وزن تا سه برابر تعداد قطعات مشابه فولادی ساخت.
 

 مقاومت زیاد در مقابل خوردگی:

یكی دیگر از خواص مشخصه آلیاژهای آلومینیوم مقاومت در مقابل خوردگی است. آلومینیوم خالص وقتی كه در هوا قرار گیرد بلافاصله با یك لایه چسبنده اكسید آلومینیومی پوشیده می‌شود، این لایه پوششی، مانع خوردگی می‌گردد. اگر در اثر سائیدگی این لایه كنده شود بلافاصله دوباره تشكیل می‌گردد. ضخامت این لایه نازك طبیعی در حدود 025/0 میكرون (یك میكرون = یكهزارم میلی‌متر) است، با این وجود بقدری محكم است كه مانع موثری در مقابل اغلب مواد خورنده محسوب می‌گردد.
البته برخی از آلیاژهای خاص آلومینیوم نسبت به دیگران مقاومتر است. برای مثال گروه آلیاژهای Al-mg مخصوصاً در مقابل هوا و آب دریا مقاوم است. از طرف دیگر آلیاژهای آلومینیوم حاوی مس یا روی از نظر مقاومت خوردگی ضعیف‌تر و از نظر استحكام مكانیكی قویتر می‌باشد.
اگر مقاومت طبیعی آلومینیوم برای بعضی از محیط‌ها كافی نباشد در آن صورت روشهایی وجود دارد كه بتوان مقاومت آن را افزایش داد. برخی از این روشها عبارتند از: «پوشش دادن با آلومینیوم Alcladding»، «آندایزه كردن (آبكاری) Anodizing»، «پوشش سخت دادن Hard Coating» و «محافظت كاتدی Cathodic Protection».
در زیر، هر یك از این روشها به طور مختصر شرح داده می‌شود كه در یكی از فصول بعدی نیز به تفضیل مورد بررسی قرار خواهد گرفت.
 


دسته بندی : فلزات غیرآهنی

ترک بازگرمايشی (Reheat Cracking)

ترک بازگرمايشی ميتواند در فولادهای کم آلياژ حاوی عناصر کرم٫ واناديوم و موليبدن و در اثر اعمال عمليات پسگرم (مانند تنش زدايی) و يا بهره برداری در دمای بالا (معمولا ۳۵۰ تا ۵۵۰C) ايجاد گردد.

مهندسي مواد

اين ترک اغلب در نواحی درشت دانه منطقه HAZ زير ناحيه جوش و يا مناطق درشت دانه فلز جوش ايجاد ميگردد. اين ترکها اغلب قابل ديد بوده و در نواحی تمرکز تنش مانند کناره جوش يافت ميشوند.
اين ترک ميتواند بصورت ترکهای درشت ماکروسکپی بوده و يا بصورت مجموعه هايی از ميکرو ترکها باشد. ماکرو ترکها بصورت ترک خشن و انشعابی در راستای نواحی درشت دانه ايجاد ميشوند. همچنين اين ترکها همواره به صورت بين دانه ای و در راستای مرزدانه های آستنيتی اوليه ظاهر ميشوند. ماکروترکها در فلز جوش ميتوانند بصورت طولی و يا عرضی نسبت به راستای جوش ايجاد شوند اما ماکروترکهای ناحيه HAZ هميشه موازی راستای جوش ميباشند.
ميکروترکها نيز ميتوانند در HAZ و يا فلز جوش ايجاد شوند. ميکروترکها در جوشهای چند پاسه٫ در نواحی درشت دانه ای که با پاسهای بعدی ريزدانه نشده اند٫ ظاهر ميشوند.
دلايل ايجاد:
هنگامی که فولادهای مستعد تحت عمليات حرارتی قرار ميگيرند٫ استحکام بدنه دانه ها در اثر رسوب کاربيدها افزايش يافته در نتيجه آزادسازی تنشهای پسماند بصورت خزش به ناحيه مرزدانه ها منتقل ميگردد.
وجود ناخالصی هايی که به مرزدانه ها انتقال ميابند و باعث تشديد تردی حرارتی ميگردند مانند گوگرد٫ آرسنيک٫ قلع و فسفر٫ استعداد فولاد به ترک بازگرمايشی را افزايش ميدهد.
طراحی اتصال نيز ميتواند احتمال ايجاد ترک بازگرمايشی را افزايش دهد. برای مثال اتصالاتی که شامل تمرکز تنش ميباشند مانند جوشهای با نفوذ ناقص٫ بيشتر مستعد ترکهای بازگرمايشی هستند.
پروسه جوشکاری نيز در اين امر موثر است. بستر جوشهای بزرگ بدليل ايجاد ناحيه HAZ درشت دانه ای که احتمال ريزدانه شدن آن در پاسهای بعدی کم است٫ نامناسب ميباشند.
پيشگيری:
- در صورت امکان از فولادهای مستعد ترک بازگرمايشی مانند 5Cr 1Mo, 2.25Cr 1Mo, 0.5Mo B, 0.5Cr 0.5Mn 0.25V و فولادهای پر استحکام حاوی کرم٫ موليبدن و واناديوم٫ استفاده نشود.
- استفاده از فولادهايی با مقدار کم عناصر تردکننده مرزدانه٫ مانند آنتيموان٫ آرسنيک٫ قلع و فسفر. فولادهايی با DG و يا PSR کمتر از صفر مستعد ترک بازگرمايشی نيستند:

DG= Cr + 3.3 Mo+ 8.1 V - 2
PSR= Cr + Cu + 2 Mo + 10 V + 7 Nb + 5 Ti - 2

- کاهش تمرکز تنش با سنگ زنی گرده جوش
- کاهش اندازه دانه آستنيت منطقه HAZ با پروسه جوشکاری مناسب و توليد ناحيه HAZ ريزدانه٫ بعنوان مثال استفاده از تکنين دو لايه و کنترل زاويه الکترود.


دسته بندی : عیوب قطعات

مروری بر خوردگی آلومینیوم

خوردگی ( Corrosion )

خوردگی اصطلاحی است که به فساد فلزات از طریق ترکیب فلز با اکسیژن وسایر مواد شیمیایی انجام می شود.

زنگ زدن ( Rusting )

زنگ زدن فقط در مورد اکسید شدن آهن وآلیاژهای آهنی در هوای خشک یا مرطوب به کار می رود که محصول خوردگی از جنس هیدرات فریک یا اکسید فریک است .

اکسید شدن ساده  فلزات سبک

این فلزات شامل فلزات قلیایی و قلیایی خاکی هستند که وقتی اکسید شوند حجم قشر اکسید تشکیل شده متخلخل بوده و مانعی جهت نفوذ اکسیژن به داخل قشر اکسید نیست و اکسید خاصیت چسبندگی به فلز ندارد. به طور خاص سدیم وپتاسیم در حرارت های عادی و متعارفی میل ترکیبی شدیدی با اکسیژن دارند ولی در درجات حرارت خیلی کم اکسید شدن به تاخیر می افتد و اکسید تشکیل شده در این حالت خاصیت چسبندگی دارد.

 آلومینیم و آلیاژهای آن

آلومینیوم ، فلزی نرم و سبک ، اما قوی است، با ظاهری نقره‌ای - خاکستری٬ مات و لایه نازک اکسیداسیون که در اثر برخورد با هوا در سطح آن تشکیل می‌شود، از زنگ خوردگی بیشتر جلوگیری می‌کند. وزن آلومینیوم تقریبأ یک سوم فولاد یا مس است . چکش خوار ، انعطاف پذیر و به راحتی خم می‌شود. همچنین بسیار بادَوام و مقاوم در برابر زنگ خوردگی است. بعلاوه ، این عنصر غیر مغناطیسی ، بدون جرقه ، دومین فلز چکش خوار و ششمین فلز انعطاف‌پذیر  است.

  

خواص فیزیکی

حالت ماده

جامد

نقطه ذوب

933.47 K (1220.58 °F)

نقطه جوش

2792 K (4566 °F)

گرمای تبخیر

293.4 kJ/mol

گرمای هم جوشی

10.79 kJ/mol

فشار بخار

2.42 E-06 Pa at __ K

سرعت صوت

5100 m/s at 933 K

خواص اتمی

وزن اتمی

26.981538 amu

شعاع اتمی (calc.)

125 (118) pm

شعاع کووالانسی

118 pm

شعاع وندروالس

اطلاعات موجود نیست

ساختار الکترونی

Ne]3 s2 3p1]

-e بازای هر سطح انرژی

2, 8, 3

درجه اکسیداسیون اکسید

3 (آمفوتریک)

ساختار کریستالی

مکعبی face centered

آلومینیوم از جمله جدیدترین مصالح ساختمانی است که در آغاز قرن 20 یک فلز نسبتا کمیاب بود و این روزها از متداولترین فلزات است که به صورت آلیاژی و غیر آلیاژی به کار می رود .

 ویژگی های عمومی خوردگی :

آلومینیوم یک فلز پست ( فعال ) است که با محیط اطراف میل ترکیبی شدیدی دارد . یعنی سطح آلومینیوم در معرض هوا به سرعت از یک لایه نازک اکسید آلومینیوم حدود 0.01 میکرومتر پوشیده می شود که فلز را از حمله بعدی خوردگی محافظت می کند . معادله زیر به معادله لگاریتمی معکوس معروف است که در مورد خوردگی و اکسید شدن فلزاتی نظیر آلومینیوم به کار می رود : 

1/y = 1/y0 – k9( Ln[a(t-t0)+1])

 

   y0  : ضخامت قشر اکسید در بدو آزمایش

t0  : زمان آزمایش در بدو شروع

k9  : ثابت                                            

این معادله در مورد اکسید شدن آلومینیوم د ردرجه حرارت معمولی و اکسیژن خشک صادق است . هم چنین د راین فلز و در فلز زیرکونیوم رشد فیلم به روش اکسید شدن آنودیک از این معادله پیروی می کند . وقتی آلومینیوم د رمجاورت اکسیژن خالص و خشک قرار می گیرد بین اکسیژن وآلومینیوم یک نوع پیل الکتریکی موضعی تشکیل می شود که سبب رشد فیلم می شود .

 خوردگی یکنواخت :

خوردگی یکنواخت فلز آلومینیوم در فضای باز معمولا قابل اغماض است . محلول های دارای PH خارج از دامنه اثر ناپذیری در نمودار پتانسیل PH سبب خوردگی مواد ساخته شده از آلومینیوم می شوند. ملاط تازه تهیه شده هم قلیایی است ولذا خورنده آلومینیوم است از این رو برای اجتناب از گسترش مناطق حک شده در سطح فلز باید مراقبت شود که از پخش شدن ملاط جلوگیری شود . سطوح آلومینیومی که در تماس با بتون تازه هستند حتما در آغاز زدوده می شوند ولی به زودی با تشکیل اندود آلومینات کلسیم برروی آن ها از خوردگی بعدی جلوگیری   می شود.

 

تشکیل حفره :

در اتمسفرهای باز آلوده ٬ حفره های کوچکی تشکیل می شوند که با چشم قابل رویت نیستند . روی این حفره ها جرم های کوچک محصولات خوردگی معمولا اکسید آلومینیوم و هیدروکسید آلومینیوم هستند ٬ تشکیل می شوند . حفره های کم عمق معمولا اثر چندانی بر استحکام مکانیکی ساختمان ها ندارند ٬ با این وجود جلای درخشنده فلز به تدریج از بین می رود و به جای آن اندود خاکستری – زنگاری محصولات خوردگی ظاهر می شود. اگر اتمسفر حاوی دوده فراوان باشد دوده توسط محصولات خوردگی جذب و رنگ زنگاری تیره ایجاد می شود .

اگر آلومینیوم به طور دائم در معرض آب قرار گیرد حفره دار شدن آن خیلی جدی خواهد بود . به خصوص اگر آب راکد باشد حضور اکسیژن وکلرید و یا یون های دیگر هالید ها تعیین کننده وجود حمله و شدت حمله خواهد بود . اگر یون های HCO3 و Cu2+وجود داشته باشند خطر حفره دار بودن بیشتر خواهد بود البته مشروط بر این که پتانسیل تشکیل حفره بالا رود . بیرون حفره واکنش کاتدی انجام می گیرد که کنترل کننده سرعت تشکیل حفره است .

 خوردگی دو فلزی :

چون آلومینیوم یک فلز پست است خطر خوردگی دو فلزی در تماس مستقیم آن  با یک فلز نجیب تر مثل فولاد وجود دارد . ولی شرط وقوع حمله ٬ حضور یک الکترولیت در نقطه تماس است . لذا خوردگی دو فلزی در فضای بسته خشک به وجود نمی آید و خطر حمله خوردگی دو فلزی در اتمسفر باز وجود دارد . البته این نوع خوردگی روی سطحی که با دوده آلوده شده باشد هم پیش می آید .

 خوردگی شکافی:

نوعی خوردگی شکافی در آلومینیوم در حضور آب پیش می آید نتیجه این خوردگی شکافی می تواند تشکیل اکسید آلومینیوم باشد که به صورت لکه های آب سبب بی رنگ شدن سطح می شود . زدودن لکه هاب آب دشوارو احتمالا غیر ممکن است .

 خوردگی لایه ای :

خوردگی لایه ای که به خوردگی پوسته شدن هم معروف است بیشتر به موادی که غلتک می خورند یا روزن ران می شوند ازنوع AlCuMg و AlZnMg محدود می شود . مکان حمله د رلایه های موازی نازک در جهت حرکت به جلو بوده است  و سبب می شود که رویه های فلزی که مورد حمله قرار گرفته اند از هم جدا شده و یا تاول هایی بر سطح فلز ایجاد شود . خوردگی لایه ای با  قرار گرفتن فلز در آب راکد و یا اتمسفر در یایی هم به وجود می آید و مقاومت در برابر خوردگی لایه ای هم از روی عملیات پیر سازی تعیین می شود .

یكی دیگر از خواص مشخصه آلیاژهای آلومینیوم مقاومت در مقابل خوردگی است. آلومینیوم خالص وقتی كه در هوا قرار گیرد بلافاصله با یك لایه چسبنده اكسید آلومینیومی پوشیده می‌شود، این لایه پوششی، مانع خوردگی می‌گردد. اگر در اثر سائیدگی این لایه كنده شود بلافاصله دوباره تشكیل می‌گردد. ضخامت این لایه نازك طبیعی در حدود 025/0 میكرون (یك میكرون = یك هزارم میلی‌متر) است، با این وجود بقدری محكم است كه مانع موثری در مقابل اغلب مواد خورنده محسوب می‌گردد.
البته برخی از آلیاژهای خاص آلومینیوم نسبت به دیگران مقاومتر است. برای مثال گروه آلیاژهای Al-mg مخصوصاً در مقابل هوا و آب دریا مقاوم است. از طرف دیگر آلیاژهای آلومینیوم حاوی مس یا روی از نظر مقاومت خوردگی ضعیف‌تر و از نظر استحكام   مكانیكی قویتر می‌باشد.                           
روش های زیر در جلوگیری از خوردگی به کار می رود :

حفاظت کاتد ی:

مصالح آلومینیوم غوطه ور در آب را می توان به روش حفاظت کاتدی در مقابل تشکیل حفره حفظ کرد. برای این کار پتانسیل  الکترودی را تا مقدار زیر پتانسیل تشکیل حفره جسم در محیط مورد نظر پایین می آورند٬ با وجود این گاز هیدروژن می تواند در کاتد تشکیل شود که نتیجه آن بالا رفتن مقدار PH است  . هرگاه PH بسیار بالا رود آلومینیوم احتمالا مورد حمله قرار می گیرد لذا از حفاظت اضافی آن باید اجتناب کرد .

 آندی کردن:

لایه اکسید تشکیل شده در سطح آلومینیوم در معرض هوا از خصلت حفاظتی خوبی برخوردار است اما این لایه اکسید را می توان با برقکافت ضخیم تر کرد . این کار را آندی کردن می گویند و اکسیدی که به این ترتیب تشکیل می شود اندود اکسید آندی نامیده می شود . با آندی کردن فلز مقاومت در برابر خوردگی افزایش می یابد ضمن اینکه سطح با قرار گرفتن  در فضای باز ظاهر جدیدی پیدا خواهد کرد . در موقع آندی کردن  آلومینیوم شی فلزی اند پیل الکترولیتی را تشکیل می دهد . اندود اکسید آندی که طی برقکافت ایجاد می شود شامل یک لایه فشرده به صورت سد در نزدیک سطح فلز و لایه دیگری با منافذ ریز بر روی آن است .

 رنگ کاری :

مصالح آلومینیومی را برای فضای باز مثل ساختمان ها نیاز به رنگ مقاوم به خوردگی ندارند . خوردگی اتمسفری ان قدر شدید نیست که بر مقاومت ساختمان اثر گذارد . در هر حال رنگ کردن آلومینیوم بیشتر به منظور زیبا سازی انجام  می شود.

اگر مقاومت طبیعی آلومینیوم برای بعضی از محیط‌ها كافی نباشد در آن صورت روش هایی وجود دارد كه بتوان مقاومت آن را افزایش داد. برخی از این روشها عبارتند از: پوشش دادن با آلومینیم ٬ آندایزه کردن یا آبکاری ٬ پوشش سخت دادن ومحافظت کاتدی .  

پوشش آلومینیومی دادن Alcladding:

بطور كلی آلیاژهای آلومینیوم با استحكام زیاد از نظر خوردگی كم مقاومترین آنها محسوب می‌گردند. این مطلب بخصوص در مورد آلیاژهای حاوی درصدهای زیاد مس یا روی صادق است. از طرف دیگر مقاومت به خوردگی آلومینیوم خالص بسیار زیاد است. پوشش آلومینیومی دادن یكی از روش های افزایش مقاومت خوردگی به یك آلیاژ با استحكام زیاد است. در این فرآیند یك لایه آلومینیوم خالص به سطح آلیاژ مورد نظر متصل شده و در نتیجه در مجموعه خواص مورد نظر حاصل می‌شود. این روش مخصوصاً در محصولات ورقه‌ای مناسب است.

آندایزه كردن (آبكاری) Anodizing:

در این روش از مقاومت زیاد در مقابل خوردگی لایه پوششی كه بلافاصله بر روی سطح آلومینیوم تازه بریده شده تشكیل می‌گردد استفاده می‌شود. همانگونه كه قبلاً ذكر گردید این لایه عامل مقاومت به خوردگی طبیعی این فلز است. آندایزه كردن در واقع یك نوع ضخیم كردن لایه اكسیدی به ضخامت تا چندین هزار برابر ضخامت لایه اكسید طبیعی است. نتیجه عمل، لایه‌ای است سخت با ضخامت حدود 5/25 میكرون بر تمام سطح آلومینیوم كه علاوه بر مقاومت به خوردگی در مقابل سایش نیز استحكام كافی دارد. آندایزه كردن یك روش الكتریكی است كه انواع مختلف آن اساساً از نظر محلولی كه فلز در آن مورد عمل قرار می‌گیرد و ضخامت لایه اكسیدی حاصل، فرق می‌نماید. از این طریق پوشش دادن علاوه بر حفاظت سطحی گاهی به منظور تزئینی نیز استفاده می‌گردد اگر فلز آندایزه شده را با انواع رنگهای مختلف پوشش دهند رنگ حاصل تقریباً بصورت قسمتی از اكسید سطحی بدست می‌آید.

 تاول زدن سطح قطعات آلومینیمی در هنگام عملیات حرارتی :

عواقب نفوذ هیدروژن بداخل مذاب از طریق واکنش سطحی مذاب با بخار آب در ریخته گری کاملا مشخص است. یک چنین واکنشی ممکن است در خلال عملیات حرارتی انحلال نیز با آلومینیوم جامد انجام گیرد که منجر به جذب اتم های هیدروژن شود. این اتم ها می توانند در حفره های داخلی با هم ترکیب شده و تشکیل مجموعه های گاز ملکولی دهند. در اثر حرارت دادن ماده فشار گازی موضعی ایجاد می شود و با توجه به اینکه در این دماهای بالا فلز دارای پلاستیسیته نسبتا زیادی است این امر منجر به تشکیل تاولهای غیر قابل جبران سطحی می گردد.  
تاولهای ایجاد شده بر سطح قطعات آلیاژ آلومینیومی عملیات حرارتی شده در محیط مرطوب حفره های داخلی که این تاولها در آنجا ایجاد می شوند از تخلخل های اولیه شمش که از بین نرفته اند ترکیبات بین فلزی که در خلال تغییر شکل ترک خورده اند و احتمالا خوشه های مکانهای خالی اتمی در شبکه که ممکن است در اثر حل شدن رسوبات یا ترکیبات حاصل شده باشند ناشی می شوند. در این گونه موارد وجود تاولی که باعث خرابی ظاهر سطحی قطعه می گردد ممکن است تاثیر برروی خواص مکانیکی قطعات بگذارد. در هر حال بیش از حد گرم کردن قطعه منجر به تاول زدن می گردد زیرا هیدروژن به آسانی می تواند توسط مناطق ذوب شده جذب گردد که در این صورت مساله جدی تر می شود و باعث مردود شدن قطعه کار   می گردد.
از آنجائی که حذف کامل حفره های داخلی در محصولات کار شده مشکل است ٬ لازم است مقدار بخار آب موجود در محیط کوره را به حداقل رسانید.اگر این امر امکان پذیر نباشد در آن صورت ورود یک نمک فلورایدی بداخل کوره در خلال عملیات حرارتی قطعات حساس می تواند از طریق کاهش واکنش سطحی قطعه با بخار آب مفید واقع شود.


دسته بندی : خوردگي

بررسي انواع عيوب ريخته گري در

 چکيده :

تحقيق به عمل آمده شامل تعدادي از عيوب قطعات آلومينيومي تحت فشار مي باشد و سعي بر آن شده که عيبهاي مهم آن از جمله  

عيب سرد جوشي -  عيب نيامد – عيب مک هاي گازي - عيب مک هاي انقباضي – عيب آبلگي – عيب مک هاي سوزني ( ريزمک ) – عيب ترک خوردگي – عيب سخت ريزه و عيب قطره هاي سرد مورد بررسي و چاره جوئي قرار گيرد . قابل ذکر است نياز امروزي صنعت به کيفيت هاي بالاتر ايجاب مي کند که توليد کنندگان به سطوح جديدي از کيفيت و بازده توليد دست يابند و اگر چه اين نوع  ريخته گري محدوديتهايي دارد اما ثابت شده که با بکارگيري اصول مهندسي کارآيي آن به خوبي بسياري از فرآيندهاي ديگر خواهد بود و باعث بالابردن سطح کيفيت موجود خواهد شد .

يک عيب در دايگست هميشه قراردادي است زيرا به نوع استفاده و نحوه برداشت هر مشتري از عملکرد و کارآيي قطعه بستگي دارد بنابراين آنچه براي يک مشتري عيب محسوب مي شود ممکن است براي مشتري ديگر نقطه ضعف به حساب نيايد تعريف اين که چه چيز عيب محسوب مي شود به عهده مشتري است و مسأله اصلي نيازهاي خاص هر قطعه مي باشد .

 مقدمه و تاريخچه  

دايکاست يا ريخته گري تحت فشار عبارت است از روش توليد قطعه از طريق فلز مذاب و تحت فشار به درون قالب که پس از بسته شدن قالب ، مواد مذاب به داخل يک نوع پمپ يا سيستم تزريق هدايت شود سپس در حاليکه پيستون پمپ مواد مذاب را با سرعت از طريق سيستم تغذيه قالب به داخل حفره مي فرستد ، هواي داخل حفره از طريق سوراخهاي هواکش خارج مي شود . اين پمپ در بعضي از دستگاهها داراي درجه حرارت محيط و در برخي ديگر داراي درجه حرارت مذاب مي باشد .

از ابتداي قرن 20 کاربرد قطعات ريخته گري آلومينيوم رشد خود را آغاز نمود اولين محصولات آلومينيوم مختص به وسايل آشپزخانه و قطعات تزئيني بود بعد از جنگ جهاني دوم رشد سريعي در صنعت ريخته گري آلومينيوم بوقوع پيوست و علت اصلي آن نسبت وزن / استحکام عالي آلياژهاي AL بود .

از سال 1945 به دليل توسعه صنايع ريخته گري تزريقي ، ميزان مصرف و کاربرد آلومينيوم ريختگي شديدا ً افزايش پيدا نمود و بيشترين آن در صنايع اتومبيل سازي بود بخصوص در کشورهايي مثل ژاپن سرعت رشد مصرف آلياژهاي AL به صورت صعودي رو به افزايش بوده است که از طريق مواد آلومينيوم مي تواند وزن اتومبيل را کاهش دهند .

 بررسي انواع عيوب ريخته گري در قطعات آلومينيومي ريختگي تحت فشار وبررسی جلوگیری از ان

 عيب سرد جوشي

سردجوشي عبارت است از برخورد دو جبهه از فلز مذاب اکسيد شده که باعث ناپيوستگي در قطعه ريخته شده مي شود . در صورتي که انجماد فلز خيلي پيشرفته باشد اتصال دو جبهه مذاب بطور کامل انجام شده و سردجوشي به صورت کشيدگي در قطعه ظاهر مي شود .

   نحوه ايجاد عيب سرد جوشي  

سردجوشي نتيجه تقسيم شدن موج مذاب در طول پر شدن قالب مي باشد اين تقسيم شدن مي تواند در اثر وجود يک مانع در راه عبور مذاب ( پين يا ماهيچه ) باشد و يا در اثر يک انسداد ناشي از جاري شدن به صورت جت مي باشد حضور اکسيد در فلز مذاب قبل از ريخته گري پديده سردجوشي را      شديدتر مي نمايد

عيب نيامد

نيامد عيبي است که در اثر نرسيدن مذاب به قسمت هايي از قطعه ايجاد مي شود اين عيب مي تواند در نواحي نازک قطعه ايجاد شود و از نظر ظاهري به عيب سردجوشي شبيه است

  نحوه ايجاد عيب نيامد

عيب نيامد نتيجه تقسيم شدن جبهه مذاب در حين پر شدن قالب است فلز خيلي سرد بوده و يا زمان پر شدن قالب خيلي طولاني مي باشد و يا حتي ممکن است جهت حرکت مذاب در قالب در حين پرشدن  قالب نامناسب باشد به طوري که مذاب مسير طولاني را براي رسيدن به هدف بپيمايد در اين حال قبل از اينکه قالب توسط مذاب پر شود انجماد آغاز شده و نيامد ايجاد مي شود .

عيب مک هاي گازي  

اين عيب به صورت مک هايي با ديواره صاف ظاهر مي شود که شکل کروي داشته و با سطح خارجي نيز ارتباطي ندارند سطح داخلي اين مک ها معمولا ً براق بوده اما گاهي ممکن است تا حدودي اکسيده نيز شده باشد که بستگي به منشأ ايجاد مک ها دارد .

 نحوه ايجاد عيب مک هاي گازي

الف ) حبس هوا در حين پر شدن قالب : پرشدن قالب هاي ريخته گري تحت فشار معمولا ً به صورت تلاطمي انجام شده و اين تلاطم باعث حبس هوا در قالب مي شود .

ب) حبس هوا در محفظه نگهدارنده مذاب : در ماشين هاي محفظه سرد در هنگام اولين فاز تزريق ذوب هوا مي تواند وارد مذاب شده و در هنگام پر شدن قالب هوا در بخش هاي زيادي از مذاب محبوس گردد .

پ) حبس گاز در محفظه سيلندر تزريق : اين حالت در اثر تبخير و يا تجزيه ماده حلال موجود در روانساز پيستون ايجاد مي شود در نتيجه در هنگام ورود مذاب به اين قسمت ها بايد ماده روانساز به صورت خشک باشد .

ت) حبس گاز از طريق مواد مذاب : همان فرآيند ذکر شده در فوق مي باشد که ناشي از تبخير ناقص روانساز قالب و يا تجزيه آن هنگام رسيدن مذاب مي باشد .

ث) آزاد شدن گاز حل شده در فلز مذاب : آلومينيوم و آلياژهاي آن به راحتي آب و ديگر ترکيبات هيدروژن دار ( مانند روغن و گريس ) را تجزيه مي نمايند هيدروژن آزاد شده در هنگام اين تجزيه در فلز حل شده و هر چه دما باشد ميزان ورود هيدروژن به فلز نيز بيشتر خواهد بود برعکس حلاليت هيدروژن درآلومينيوم در حالت جامد عملا ً ناچيز است در نتيجه در حين انجماد هيدروژن حل شده در مذاب آزاد شده و ايجاد سوراخ هاي ريز مي نمايد .

 عيب مک هاي انقباضي : 

مک هاي انقباض به صورت حفره با فرم و اندازه متغير مي باشند اين مک ها بر عکس مک و حفره هاي گازي سطوح صاف و براق نداشته و کم و بيش حالت کندگي و سطوح دندريتي دارند .

 نحوه ايجاد عيب مک هاي انقباضي

در هنگام انجماد فلز دچار انقباض حجمي گرديده و در صورت عدم وجود فلز مذاب جبران کننده انقباض ، اين انقباض به صورت يک يا چند حفره ظاهر مي گردد اين حفره ها مي توانند در سطح قطعات ريختگي ظاهر شوند ( مثلا ً در مواردي که مذاب در شمش ريزي منجمد مي شود ) و يا برعکس به صورت بسته در داخل قطعه محبوس گردند که معمولا ً در ريخته گري تحت فشار مشاهده مي شود .

 عيب آبلگي  

عيب آبلگي همانند حفره هاي گازي است اما در سطح قطعه ظاهر مي شود همچنين در مورد قطعات نازک اين عيب مي تواند در دو سطح قطعه نيز ظاهر شوند .

طريقه ايجاد عيب آبلگي

روش ايجاد آبلگي همانند ايجاد عيب حفره هاي گازي است ولي در اين مورد آزاد شدن هيدروژن حل شده بر خلاف ايجاد حفره هاي گازي ، به صورت غير کافي انجام مي گيرد در  اين حال در صورتي که درجه حرارت قطعه در هنگام باز کردن قالب بيش از حد بالا باشد مقاومت مکانيکي آلياژ بسيار ضعيف بوده و حفره هاي گازي ايجاد شده تحت فشار فوق العاده قوي موجب تغيير شکل قطعه در نواحي نزديک سطح مي شوند همچنين در صورت نازک بودن قطعه نسبت به قطر حفره گازي نيز عيب فوق به وجود مي آيد  

 عيب مک هاي سوزني ( ريزمک)  

ريز مک هاي سطحي به صورت سوراخ هاي بسيار ريز ( چند صدم ميلي متر ) و اغلب به صورت گروهي مشاهده مي گردند .

نحوه ايجاد عيب مک هاي سوزني  

الف ) حبس گاز : در اين مورد تاول هاي ريزي به وسيله حباب هاي گازي که در نواحي بسيار نزديک سطح محبوس گرديده اند ايجاد مي شود .

ب) اکسيدها : اکسيدهاي  موجود در فلز نيز مي توانند عيب فوق را ايجاد نمايند .

 عيب ترک خوردگي  

عيب ترک خوردگي به صورت ايجاد ترک هاي کم و بيش نازک و عميق ظاهر مي شود در برخي موارد اين ترک ها مي توانند حتي ضخامت قطعه را نيز طي نمايند .

 نحوه ايجاد عيب ترک خوردگي

اين نوع ترک ها بين دانه اي بوده و به فرم هاي غيرمنظم مي باشند اين ترک ها هنگامي ايجاد مي شوند که آلياژ در انتهاي انجماد تحت تنش باشد . در اغلب موارد خطر ايجادترک در نواحي از قطعه که مستعد ايجاد تنش مي باشند و در نقاط گرم بيشتر است .

عيب سخت ريزه

اين عيب به صورت ناهنجاري ساختاري و يا حضور اجسام خارجي مي باشد که در حين ساخت و يا فرسايش و يا شکست ابزار برش ايجاد مي شوند .

نحوه ايجاد عيب سخت ريزه

عيب سخت ريزه در ريخته گري تحت فشار مي تواند مبدأ متفاوتي داشته باشد .

الف ) ترکيبات بين فلزي  

الف – 1 – ترکيبات m-Al(Fe,Mn)Si

اين ترکيبات بر روي برش هاي قطعات به صورت سوزن هاي کوتاه ديده مي شود که در حقيقت به صورت ذرات بريده مشاهده مي شود .

الف – 2 – ترکيبات x-Al(Fe,Mn)Si

اين ترکيبات به فرم خطوط چيني ريز مشاهده مي شوند اين ترکيبات نسبت به ترکيبات قسمت قبل (m-Al(Fe,Mn)Si) بر روي خواص مکانيکي ضرر کمتري داشته و در فرآيند ساخت عملا ً مشکلي را ايجاد نمي نمايند .

الف – 3 – ترکيبات c-Al(Fe,Mn)Si

اين ترکيبات به شکل بلورهاي چند وجهي با طول متغير مي باشند اين نوع ترکيبات هنگامي ايجاد مي شوند که درجه حرارت حمام مذاب به کمتر از حد معيني باشد که اين حد بستگي به مقدار آهن ، منگنز و کروم  در آلياژ دارد .

ب) اکسيداسيون ، واکنش با ديرگدازه ها

 آلياژهاي آلومينيوم مخصوصا ً در حالت مايع طبيعتا ً بسيار اکسيد شونده هستند  روي حمام آلياژ مذاب معمولا ً لايه اي از اکسيد آلومينيوم ايجاد مي شود که به آن اکسيد آلومينيوم گاما مي گويند اين لايه به شدت محافظت کننده است اما طي چند ساعت يا چند ده ساعت به اکسيد آلومينيوم آلفا تبديل مي شود سرعت تبديل تابعي از درجه حرارت مي باشد از طرفي سرعت اکسيداسيون همچنين به حضور برخي عناصر آلياژي و از همه مهم تر در ريخته گري تحت فشار بستگي به حضور فلز روي در آلياژ دارد .

پ) ذرات خارجي

آزمايش سيستماتيک بر روي تعداد زيادي از نمونه ها به کمک ميکروسکوپ الکترونيکي نشان داده اند که اغلب ذرات خارجي موجود در قطعات ، متشکل از ذرات ديرگدازنشان داده اند که اغلب ذرات خارجي موجود در قطعات ، متشکل از ذرات ديرگداز ،(احتمالا ً با شکل تغيير يافته در اثر واکنش با آلومينيوم و يا ذرات بوته ) مي باشند .

 عيب قطره هاي سرد

قطرات سرد به صورت طبله هاي کم و بيش کروي به صورت محبوس در روي قطعه ظاهر مي شوند واغلب موارد نيز قابل حل شدن و ايجاد پيوستگي ساختاري با فلز اطراف خود نمي باشند تنها راه تشخيص اين عيوب ، بررسي ريز ساختار آنها مي باشد .

نحوه ايجاد عيب قطره هاي سرد

 قطرات سرد قسمت هايي از فلز هستند که به سمت ديواره هاي قالب و يا ماهيچه پاشيده شده اند و بلافاصله نيز منجمد گرديده اند بدون آنکه بتوانند توسط مذاب بعدي حذف گردند اين قطرات منجمد در داخل  قطعه محبوس شده ، بدون آنکه ذوب مجدد شده باشند اين قطرات فقط باعث ايجاد يک غيرهمگوني در ساختار فلزي مي شوند .

طبقه بندي علل عيوب قطعات آلومينيومي ريختگي تحت فشار

علل عيب سرد جوشي

                                  عدم تنظيم حرکت پيستون تزريق

                                  طرح نامناسب سيستم مذاب رساني

                                  پايين بودن سرعت دومين فاز مرحله تزريق

                                  بيش از حد بودن مقدار مذاب تزريق شونده

                                  سرد بودن قالب

                                  سرد بودن مذاب هنگام تزريق

                                  کوتاه بودن کورس ( زمان ) دومين مرحله تزريق

علل عيب مک هاي گازي

                                  طرح نامناسب سيستم مذاب رساني 

                                  کم بودن سرعت دومين مرحله تزریق

                                  بالا بودن سرعت دومين مرحله تزريق 

                                  طولاني بودن زمان مرحله تزريق

                                  مشکل قالب گيري

                                  عدم وجود هواکش به ميزان کافي در قالب

                           کيفيت نامناسب مذاب ( تميز نبودن يا حضور اکسيدها

                                  عدم تنظيم سرعت مرحله اول تزريق

علل عيب مک هاي انقباضي

                                  فشار نامناسب مرحله سوم ( تزريق

                                  عدم تنظيم حرکت پيستون تزريق

                                  طرح نامناسب سيستم مذاب رساني

                                  سرعت خيلي پايين مرحله دوم تزريق

                                  گرم بودن قالب

                           کيفيت نامناسب مذاب ( تميز نبودن يا حضور اکسيدها

علل عيب آبلگي

                                  عدم تنظيم حرکت پيستون تزريق

                                  سرعت پايين مرحله دوم تزريق

                                  بالا بودن سرعت مرحله دوم تزريق

                                  طولاني بودن زمان مرحله دوم تزريق

                                  مشکل قالب گيري

                                  عدم وجود هواکش به اندازه کافي در قالب  

                         کيفيت نامناسب مذاب ( تميز نبودن يا وجود اکسيدها

                                  عدم تنظيم سرعت مرحله اول تزريق

علل عيب مک هاي سوزني

                                  طرح نامناسب سيستم مذاب رساني

                                  طولاني بودن زمان مرحله دوم تزريق

                                  زمان نامناسب قالب گيري

                                  عدم وجود هواکش به ميزان کافي در قالب

                      کيفيت نامناسب آلياژ مذاب ( تميز نبودن يا وجود اکسيدها

                                  عدم تنظيم سرعت مرحله اول تزريق

علل عيب ترک خوردگي

                                  نامناسب بودن عمل تزريق

                                  فشار نامناسب مرحله سوم تزريق

                                  گرم بودن قالب

                                  گرم بودن مذاب تزريق شونده

                                  مشکل قالب گيري 

                            کيفيت نامناسب مذاب ( تميز نبودن يا وجود اکسيدها

علل عيب سخت ريزه

                                  نامناسب بودن ترکيب شيميايي آلياژ

                                  نامناسب بودن زمان انجماد

                                  وجود ترکيبات بين فلزي در آلياژ

                                  اکسيد شدن آلياژ و واکنش با ديرگدازه ها

                                  وجود هر گونه ذرات خارجي در آلياژ

علل عيب قطرات سرد

                                  عدم تنظيم حرکت پيستون تزريق

                                  طرح نامناسب سيستم مذاب رساني

                                  پايين بودن سرعت مرحله دوم تزريق

                                  سرد بودن مذاب تزريق شونده

                                  کوتاه بودن زمان مرحله دوم تزريق

 بررسي روش هاي جلوگيري از ايجاد عيوب در قطعات آلومينيومي ريختگي تحت فشار

 مشکلات تزريق : مشکلات مربوط به تزريق مذاب منجر به ايجاد ترک در حد قابل توجهي مي شوند به خصوص هنگامي که بيرون اندازه ها به طور موضعي روي قطعه فشار وارد کرده و قطعات هنگام خروج دچار تغيير شکل شوند در اين حال فشار زيادي بر قطعات وارد شده و منجر به شکست يا ايجاد ترک مي گردد جهت حل اين عيب سه راه حل وجود دارد .

الف ) کوتاه کردن بيرون اندازه ها .

ب) افزايش ضخامت راهگاه در محل تماس با قطعه .

پ) بازبيني نحوه توزيع بيرون اندازه ها روي قطعه و يا افزايش قطر آنها .

 اضافه فشار يا زمان بالا آمدن ذوب : تأثير فشار اضافي در فاز سوم با دو فاکتور در ارتباط مي باشد مقدار فشار اعمال شده و تأخير در کاربرد اين فشار

الف ) مقدار فشار اعمال شده : فشار اضافي اثر مطلوبي بر کاهش عيوب به ويژه در مورد مک هاي انقباضي به وسيله اعمال فشار در فاز يوتکتيکي دارد  در اين حال تأثير اين فشار اضافي بر روي حفره هاي گازي کمتر محسوس مي باشد حداکثر فشار قابل اعمال بستگي به نيروي بسته شدن قالب دارد .

ب) تأخير در اعمال فشار : با ايجاد تأخير در اعمال فشار اضافي در مرحله سوم ريخته- گري تحت فشار ، انجماد سريعا ً انجام مي پذيرد به همين دليل لازم است فشار مرحله سوم بلافاصله پس از پر شدن قالب اعمال گردد در غير اين صورت قسمت هاي نازک قطعات منجمد گرديده و مانع هر گونه انتقال فشار بر بقيه قسمت هاي قطعه مي گردد .

 گريپاژ يا توقف نابهنگام پيستون تزريق : حرکات ناگهاني پيستون تزريق عامل ايجاد انواع عيوب است از جمله سرد جوشي ، نيامد، مک هاي انقباضي  و حتي عيب قطرات سرد ، گريپاژ پيستون به راحتي قابل تشخيص است به شرط آنکه منحني جابجايي و فشار آن را در اختيار داشته باشيم .

منشأ گريپاژ پيستون اغلب در سرد شدن نامناسب پيستون بوده که خود دو علت دارد .

الف ) کارکرد نامناسب سيستم خنک کننده پيستون تزريق .

ب) دبي غير کافي آب که ، نياز به بازبيني و رگلاژ دارد .

از طرفي علت هاي  ديگري نيز جهت گريپاژ پيستون وجود دارند :

الف ) سرد شدن بيش از حد پيستون تزريق

ب) بسته شدن شير تزريق و يا ديگر عيوب مربوط به سيستم هيدروليک

پ) گرفتگي فلر در سيلندر تزريق

ت) طرح سيستم تغذيه قالب

چند عامل جهت نامناسب بودن قالب را مي توان ذکر نمود :

الف ) روش طراحي – سيستمي که از طريق تجربي طراحي شده باشد و يا حتي بدتر از آن طراحي بدون محاسبه موجب ايجاد عيوب مي گردد .

ب ) کوتاه بودن طول راهگاه ورودي مذاب – در اين حال برخي نقاط قطعه به سختي از مذاب تغذيه شده و يا برعکس موجب چرخش مجدد مذاب در داخل قالب مي گردد .

پ) تعداد بيش از حد راهگاه ورودي مذاب – در صورتي که قطعه توسط مقدار بيش از حد راهگاه ورودي مذاب پر شود (3 و يا بيشتر ) و فاصله آنها زياد باشد در طول پر شدن قالب خطر جوش خوردگي نا مناسب وجود دارد ( عيوب سردجوشي و نيامد )

ت) نوع سيستم راهگاهي براي قطعه ريختگي نامناسب باشد فرم قطعه يک پارامتر مهم جهت انتخاب سيستم راهگاهي به بهترين شکل ممکن به منظور پر شدن صحيح قالب مي باشد .

 ميزان کردن نامناسب ذوب با مقدار بيش از حد ذوب : مقدار نامناسب مذاب عامل مهمي در پيدايش عيوب است در نتيجه هنگامي که مذاب در حد بيش از اندازه در داخل محفظه ريخته شود پر شدن قالب در همان مرحله اول تزريق انجام شده و فلز به طور غير عادي سرد مي شود و عيوب سرد جوشي و يا نيامد انجام مي شوند .

سرعت پايين مرحله دوم تزريق : جهت پرکردن  قالب در شرايط بهينه لازم است که مذاب به حالت پودري در قالب جاري شود در اين حال فلز به صورت قطرات ريزي در آمده که موجب کاهش خطر حبس هوا در قالب مي شوند اين امر از ايجاد حفره هاي گازي ، آبلگي ، زير حفره ، نيامد و کشيدگي جلوگيري مي نمايد

در برخي موارد در قطعاتي که ضخيم باشند اين مزيت وجود دارد که قالب مي تواند با سرعت مرحله دوم کمتري پر شود در اکثر قريب به اتفاق قطعات ريختگي تحت فشار ، سرعت مرحله دوم بالايي لازم است .

 سرعت مرحله دوم تزريق بيش از حد زياد باشد : اگر سرعت حرکت پيستون تزريق بيش از  حد زياد باشد سرعت تزريق مذاب در قالب و در نتيجه سرعت پر شدن قالب نيز بيش از اندازه خواهد بود در ريخته گري تحت فشار عملا ً دو سيستم جريان مذاب مشاهده مي شود .

اول سيستم فوراني (جت ) که براي پر شدن قالب و سلامت داخلي قطعات مضر مي باشد اين مسئله در سرعت هاي بيش از حد پايين مرحله دوم تزريق مشاهده مي شود .

دوم سيستم اسپري شدن مذاب است که بهترين حالت ممکن را جهت رسيدن به سرعت کافي تزريق مذاب به دست مي دهد ( بستگي ضخامت راهگاه ورودي مذاب دارد ) با وجود اين در محدوده سيستم اسپري شدن مذاب براي سرعت هاي نسبتا ً بالا يک سري مشکلات نيز ممکن است ايجاد شوند در نتيجه هنگامي که سرعت مرحله دوم تزريق خيلي زياد است هواي داخل قالب زمان لازم براي خروج از محفظه قالب را نداشته و مي تواند منجر به ايجاد عيوب حفره هاي گازي و سوزني شدن گردد در اين حال لازم است که سرعت مرحله دوم تزريق کاهش يابد .

بايد خاطر نشان شود که سرعت بيش از حد مرحله دوم تزريق در برخي موارد منجر به فرسايش شديد قالب نيزمي شود که عمر قالب را کوتاه مي نمايد .

سرد بودن قالب : سرد بودن قالب موجب ايجاد عيوب مختلفي مي شود راه حل هاي مختلفي جهت جلوگيري از آن مي توان پيشنهاد نمود .

الف ) کاهش ميزان روغن کاري

ب) افزايش آهنگ توليد (در صورت امکان )

پ) افزايش دماي مذاب تزريق شونده به منظور افت حرارتي قالب

ت) افزايش زمان انجماد به منظور کاهش اتلاف حرارتي قالب

بيش از حد گرم بودن قالب :

هنگامي که قالب بيش از حد گرم باشد چندين راه قابل ارائه هستند .

الف ) افزايش ميزان روغن کاري ، چون روغن کاري موجب سرد شدن قابل توجه قالب مي گردد .

ب) کنترل شرايط سرد وگرم شدن قالب .

پ) کاهش سرعت توليد .

سرد بودن بيش از حد مذاب در حين تزريق : به منظور کاهش خطر ايجاد عيوب ريخته گري مانند سردجوشي ، نيامد ، ترک خوردگي و قطرات سرد بايد مذاب در منطقه بالاي سوليدوس بوده و اين مسأله در تمام مرحله پر شدن قالب رعايت شود در صورت سرد بودن بيش از حد مذاب ، چندين راه حل وجود دارند که عبارتند از :

الف ) افزايش دماي مذاب در کوره نگهدارنده با وجود اين نبايد بالاتر از محدوده c 710 باشد .

ب) کاهش زمان انتقال مذاب ازکوره ذوب به کوره نگهدارنده به منظور کاهش اتلاف حرارتي در ملاقه و ريختن فلز گرم تر به داخل کوره هاي نگهدارنده .

پ) کاهش زمان نگهداري مذاب پيش از بارريزي ، زيرا مذاب در کوره نگهدارنده مرتبا ً سردتر مي شود .

ت) در انتها مؤثرترين راه حل را مي توان کاهش زمان پر شدن قالب عنوان کرد .

 گرم بودن بيش از حد مذاب در هنگام تزريق : مذاب بيش از حد گرم در هنگام تزريق مي تواند باعث ايجاد عيوبي نظير ترک خوردن ( فلز بيش از حد گرم در حين تزريق مي تواند تغيير شکل دهد ) و يا کشيدگي انقباضي گردد ( به علت افزايش درجه حرارت قالب ) براي رفع اين مسأله دو راه حل وجود دارد که عبارتند از :

الف ) کاهش درجه حرارت مذاب در کوره نگهدارنده ، البته نبايد دما را بيش از حد کاهش داد زيرا در اين صورت عيوب ديگري مانند سردجوشي و ... به وجود خواهند آمد .

ب) افزايش زمان پر کردن قالب هدف از اين کار از بين بردن تأثير گرم شدن قالب در حين پر شدن و به دست آوردن فلز سردتر در انتهاي پر شدن قالب مي باشد .

نتيجه

در تمام تبادل نظرهايي که در هر کارخانه يا کارگاه معين بين افراد صورت مي گيرد      ( بين کارخانه و فروشندگان ، و بين کارخانه با ساير کارخانه ها ) مشکلات بزرگ زيادي مي تواند به دليل تفاوت در نوع تعريف و فهم هر يک از طرف ها از عيوب ايجاد شود .

نمونه هاي زيادي وجود دارد که يک اپراتور يا متصدي کنترل کيفي موردي را به عنوان عيب تعريف کند در حالي که اين يک عيب نيست اين امر موجب اعمال اقداماتي مي شود که هميشه پرهزينه بوده واغلب ضرورتي ندارد اطمينان يافتن از اين که تمام افراد نام تعريف شده براي عيوب ريختگي و نحوه توصيف آن را به درستي مي دانند مي تواند تا حد زيادي از بروز چنين مسائلي جلوگيري نمايد .

به همين دلايل ( و دلايل ديگر) براي يک توليد کننده قطعات دايکاست داشتن تعاريف خوب و مناسب از عيوب براي ديگران مزيت بزرگي به شمار مي آيد يک فاکتور ساده ولي حياتي در اين زمينه وجود افرادي هست که در يک کار گاه به يک زبان صحبت کنند و درک خوبي از هم داشته باشند .

بهترين راه براي حل اين مشکل درست کردن يک تابلو عيوب به همراه نمونه اي از قطعات معيوب و برچسب گذاري قطعات با نامي که به عيب مربوط به آنها اختصاص داده شده مي باشد به همراه اين تابلو ، کتاب عکسي بايد وجود داشته باشد که هر يک از عيوب در آن نشان داده شده باشد .

 


دسته بندی : عیوب قطعات

پيوند متالورژيکی در فرایند گالوانیزه

در فرايند گالوانيزه پيوندی متالورژيکی بين پوشش و زير لايه فولادی يا آهنی ايجاد می شود كه بصورت قسمتي از سطح فلز پايه ميگردد. طی فرايند گالوانيزه روی مذاب با سطح فولادی يا آهنی واکنش داده و يک سری آلياژهای روی- آهن را  تشکيل می دهد. معمولا پوشش های گالوانيزه شامل سه لايه آلياژی و يک لايه روی فلزی می باشند، که به ترتيب از زير لايه تا سطح خارجی عبارتند از:

  • لايه نازک گاما (Gamma layer)  که از آلياژی شامل 75% روی و 25% آهن تشکيل شده است.

  • لايه دلتا  (Delta layer) که از آلياژی شامل 90% روی و 10% آهن تشکيل شده است .

  • لايه زتا ( Zeta layer) که از آلياژی شامل 94% روی و 6% آهن تشکيل شده است .

  • لايه خارجی  اتا (Eta layer) که از روی خالص تشکيل شده است .

مهندسي مواد

هر لايه با يک عدد سختی هرم الماسی (Diamond Pyramid  Number (DPN)) مشخص می گردد DPN يك مقياس اندازه گيري سختي مي باشد. به طور معمول لايه های گاما ، زتا و دلتا سخت تر از زير لايه فولادی می باشند .سختی اين لايه های زيرين ، پوشش را از آسيب ديدگی در برابر سايش، بطور قابل قبولی محافظت می کند. لايه اتای پوشش گالوانيزه کاملا داکتيل می باشد که مقاومت به سايش خوبی را برای پوشش گالوانيزه فراهم می کند. پوشش گالوانيزه به زير لايه فولادی با چسبندگی چندين هزار پوند بر اينچ مربع ( PSI ) متصل است .چسبندگی ساير پوشش ها معمولا دربهترين حالت در حد چند صد PSI است.

تركيب سه فاكتور سختي ، چكش خواري ، چسبندگي پوشش گالوانیزه منجر به مقاومت عالي این پوشش در برابر خوردگي يا خراش مي شود. از آنجاييکه محافظت از خوردگی، به پیوسته بودن (بدون نقص بودن) پوشش بستگی دارد، چقرمگی (toughness) پوشش گالوانيزه بسيار مهم می باشد. چرا که ساير پوشش ها به هنگام حمل و نقل يا در حين کار براحتی آسيب می بينند.

کارشناسان درمورد اينکه تمام پوشش های آلی ( مانند رنگ ها ) تا حدودی نفوذ پذير هستند ، اختلاف نظر دارند در صورتیکه با انجام گالوانیزه صحيح، این پوشش ها غير قابل نفوذ می باشند. و حتی در صورت آسيب ديدگی فيزيکی این پوشش ها، لايه گالوانيزه از لايه فولادی فاقد پوشش، محافظت کاتدی می کند. اگر مناطق خاصی از زير لايه فولادی يا آهنی به اندازه4/1 اینچ ("0.25) طولی يا عرضی، بدون پوشش باشند، روی مجاور آن مناطق تا زمانی که پوشش داشته باشند، از آن نواحی محافظت کاتدی می کند.

بطور طبيعی پوشش لبه ها و کنج ها در فرايند گالوانيزه ، به ضخامت ساير قسمت های قطعه مي باشد ،اما احتمال صدمه دیدن از گوشه ها و لبه ها بیشتر از سایر قسمت ها می باشد. بنابراين بايد از اين مناطق محافظت بيشتری کرد. پوشش دادن با  قلم مو يا اسپری بطور طبیعی باعث ایجاد ضخامت های نازک تر در لبه ها و گوشه ها میگردد. ولی چون در فرايند گالوانيزه تمام ماده در مذاب غوطه ور می شود، تمامی سطح آن دارای پوشش یکنواختی می باشد.


دسته بندی : متالورژی فیزیکی

عیوب " سخت ریزه ها " در آلیاژهای ریختگی Al-Si

مقدمه

     یکی از مهم ترین عیوب که در آلیاژهای آلومینیم بخصوص در ریخته گری تحت فشار وجود دارد سخت ریزه ها هستند . سخت ریزه ها عموما درجه سختی بالایی داشته و ممکن است مشکلات زیادی در عملکرد ماشین کاری به وجود آورند . شمول های سخت ریزه ها معمولا به دلیل اندازه کوچکشان با اشعه ایکس به سختی رفع می شوند٬   بنابراین این عیوب داخلی غیر قابل دیدن هستند . عیوب سخت ریزه ها باعث پارگی های بزرگی روی سطح ماشین کاری و نیز گرم شدن و یا حتی شکستن لبه ابزار برش می شوند و هم چنین سرعت عملکرد ماشین کاری را به طور قابل ملاحظه ای کاهش داده و باعث افزایش هزینه های ماشین کاری می شوند . به طور کلی در آلیاژهای Al-Si چهار دسته از این عیوب سخت ریزه وجود دارند که عبارتند از :                  

1. اکسیدها

2.بین فلزی ها

3. ذرات نسوز

4. الماسه ها 

    مبحث زیر شمول های سخت ریزه ها را در  Al-11/5Si-0/4Mg-Fe- Mn در ریخته گری ماسه ای مورد بررسی قرار می دهد .

 تکنیک های آزمایشی                         

     تکنیک های آزمایشی شامل ذوب استاندارد و روش های ریخته گری برای آلیاژهای ریختگی آلومینیم است و از هیچ تغییر اضافی ای در این فرایند مانند ریزدانه کردن یا شکل دهی به وسیله سدیم و استرانسیم استفاده نشده است . فلز در 730 یا 760 درجه سیلسیوس دمای معمول ریخته گری ودر هوا به داخل ماسه های مرز بندی شده Pepset و قالب های فلزی ریخته گری می شوند . قالب های تست بعد از ریخته گری ٬ ماشین کاری می شوند و برای آزمایش های کشش و خمش ارجاع داده می شوند . در نهایت سطح نمونه آزمایشی متالورژیکی وسطوح شکاف دار زیر میکروسکوپ نوری مشاهده می شوند .                               

 انواع مختلف سخت ریزه ها  

1) اکسیدها :

   آلومینیم ومنیزیم میل ترکیبی زیادی برای  واکنش با اکسیژن دارند . بنابراین انتظار می رود که اکسید ها یکی از اصلی ترین شمول های سخت ریزه ها در آلیاژهای ریختگی آلومینیم محسوب شوند . باید تاکید کرد که آلومینیم و منیزیم مایع قابلیت حل شدن در اکسیژن را ندارند . آن ها ممکن است به دلیل اغتشاش سطحی از سطح مایع به درون فلز کشانیده شوند . اگر شمول های اکسیژنی به داخل مذاب کشانیده شوند احتمالا در تماس اتمی مناسبی نخواهند بود . اما انتظار می رود که با یک فیلم اکسیدی احاطه شده باشند و این شمول با یک لایه از هوا هنگامی که از سطح مذاب اکسیدی عبور می کنند ٬ آن را دریافت می کنند ٬ جدا شده اند . به نظر می رسد که یک لبه باریک از این فیلم اکسیدی که به عنوان یک شکاف عمل می کند مربوط به چنین ذراتی است.                                      

2) ترکیب های بین فلزی :

     ترکیب های بین فلزی که غنی از آهن هستند شایع ترین نوع سخت ریزه ها در آلیاژهای  Al-Si  شامل آهن و منگنز می باشند . ترکیب های بین فلزی به دلیل ته نشینی و کشش نیمه رساناها در گدازه های آلومینیمی به خصوص در صنعت ریخته گری تحت فشار به کار گرفته می شوند .

  عموما تصور می شد کریستال های غنی از آهن اولیه ٬Al15(FeMn)3Si2  یا  Al15(FeMnCr)3Si2  باشند٬ اما تحقیقات نشان داده تنوعات بسیار زیادی مثل Al15(FeMn)3Si2 ٬   Al8FeMnSi2       ، Al12(FeMn)7Si و Al17(FeMn)4Si2 وجود دارد . گفته می شود که ذرات غنی از آهن اولیه٬ سختی بالا٬نقطه ذوب بالا و وزن مخصوص بالایی دارند .

      بین فلزی های غنی از آهن اولیه می توانند اندازه بزرگی داشته باشند حتی بالاتر از چند میلی متر که ناشی از تشکیل آن ها در دماهای بالاتر از مایعات آلیاژها ی  Al-Si است  .

     شمول هایی غنی از آهن اولیه روی کناره های فیلم اکسیدی دوتایی جوانه زنی می کنند . بنابراین سطوح شکاف دار اولیه شمول های غنی از آهن اولیه هستند که معمولا با فیلم های اکسیدی پوشانده شده اند به همین دلیل آلیاژهای ریختگیAl  معمولا در طول مسیرشکاف اکسیدی خراب می شوند . ذرات غنی از آهن اولیه معمولا شکل های ستاره ای ٬چند وجهی و شاخه ای روی بخشهای 2-D دارند . دیگر شمول های بین فلزی TiAl3 وTi(AlSi)2 ممکن است در آلیاژ Al-Si-0/4Mg شامل آهن ٬ منگنز وتیتانیم وجود داشته باشند . درحضور سطوح بالای استرانسیم ممکن است فاز غنی از استرانسیم یعنی Al2Si2Srیا  Al4Si2Srبه عنوان بین فلزی

های اولیه درآلیاژهای Al-Si-0/4Mg که شامل استرانسیم هستند حضور داشته باشند . ترکیبات غنی از استرانسیم روی فیلم های اکسیدی جوانه زنی و رشد می کنند . دیگر بین فلزی ها یا غیر فلزی ها ممکن است با حضورریزکننده های دانه با افزودن بورید تیتانیم یا ذرات کاربید تیتانیم به گدازه ویا دیگر نیتریدها وکاربیدها به وجود آیند .عیوب سخت ریزه ها اگر به اندازه کافی بزرگ باشند آنگاه این شمول ممکن خواهد بود .

3 ) ذرات نسوز  :                             

     ذرات نسوز ناهمگن می توانند به طور اتفاقی داخل قطعات ریختگی ناشی از شکستن یا تکه تکه شدن پوشش و جداره کوره ها ٬ بوته ها ٬ پاتیل ها و یا ابزار ایجاد شوند . برای جلوگیری از چنین تله افتادن ذرات نسوز هشدارهای زیر لازم است :                                              

1) تمیز کردن سطوح داخلی بوته ها ٬ پاتیل ها و یا ابزارها بعد از ریخته گری  .

2) جلوگیری از حرارت دادن زیاد  .   

3) جلوگیری از شوک های مکانیکی و گرمایی  .                       

4) صافکاری دوباره میله های غلاف ذرات                                               

5) جایگزینی جداره های کوره ها ٬ بوته ها ٬ پاتیل ها و ابزار.      

6) استفاده از مواد جداره با کیفیت بالا .

     علاوه بر این٬ شمول های ماسه ممکن است به داخل ریخته گری کشانیده شوند . شمول های سیلیسی از سیلیکا ناشی شده است . به خاطر این که شمول های اکسیژنی باید به درون فلز به وسیله عبور کردن از سطح آن که البته اکسید شده است وارد شود . بنابر این شمول از گداخته شدن به وسیله یک لایه باریک از گازها از باقی مانده هوا به همراه لبه خشک بسته اکسیدی جدا خواهد شد . بنابراین شمول با گدازه واکنش نمی دهد زیرا به وسیله هوا احاطه شده است و هیچ تماسی با آن ندارد .

4 ) الماسه ها :

     الماسه ها ریز قطرات کوچکی ازآلیاژ ریختگی هستند که طی مدت ریخته گری قالب شکل می گیرند به خصوص در طی مدت ریخته گری تحت فشار . ریز قطرات کوچک از جریان مایع جدا هستند و قبل از این که آن ها با ریخته گری پیوسته شوند به سرعت درون ساختارهای ریخته گری مناسب جامد می شوند . ساختار مناسب آن ها به این صورت است که قوی ٬ سخت و زمخت هستند . دو ریز قطره با یک فیلم اکسیدی سطحی پوشانیده می شوند . البته بعید به نظر می رسد که این الماسه ها نسبت به محل تشکیل خود در فیلم اکسیدی دوتایی ناهماهنگ باشند .                               

 


دسته بندی : عیوب قطعات

جوشکاری چدن ها

مقدمه

    جوشكاري يكي از مهم ترين فرايندهاي ساخت و توليد در صنعت مي باشد و در صنايع مختلف نظير خودرو سازي ، نفت و گاز ، پتروشيمي ، تاسيسات و ساختمان و پل ها ، حمل و نقل ، كشتي سازي ، صنايع ريلي ، نيروگاه ها ، صنايع  دفاعي  و  هوا  فضا  ،  محصولات  پزشكي  ،  الكترونيكي  و  تجهيزات دقيق و .....  كاربردهاي فراواني دارد . كشور ايران در حال پيمودن مسير توسعه صنعتي بوده و از اين رو صنعت جوش براي كشور از اهميت ويژه اي برخوردار است . بنابراين آموزش منسجم و هماهنگ با جهان در اين صنعت ، يكي از نيازهاي مهم كشور تلقي مي گردد .

چدن ها گروهي از آلياژهاي آهني با خواص گوناگون و متنوع اند و به جاي اين كه در حالت جامد روي آنها كار انجام گيرد در حالت مذاب به شكل دلخواه ريخته گري مي شوند . بر عكس فولادها كه كمتر از 2% كربن و معمولاً كمتر از 1% كربن دارند ، چدن ها 2 تا 4% كربن و 1 تا 3% سيليسيم دارند . ساير عناصر فلزي و غير فلزي نيز براي كنترل و ايجاد ويژگي هاي خاص اضافه مي شوند . علاوه بر تركيب شيميايي ، عوامل مهم ديگري از قبيل فرايند انجماد ، نرخ انجماد و عمليات گرمايي بعدي بر خواص آنها تاثير مي گذارد . چدن ها عالي ترين آلياژهاي ريخته گري اند و داراي گسترده ي وسيعي از استحكام و سختي و در بعضي موارد خواص ماشينكاري خوبي مي باشند .

انجام عمليات جوشكاري روي قطعات ريخته شده چدني به دليل الزاماتي است كه به برخي از مهمترين آنها اشاره شده است :

الف) برطرف كردن بعضي عيوب ريخته گري كه پس از بيرون آوردن قطعه از قالب يا در حين تراشكاري ظاهر مي شوند ، نظير حفره هاي گازي ، حفره هاي ناشي از ريزش ماسه يا حبس سرباره ، ترك هاي موضعي ، كشيدگي يا تغيير ابعاد در بعضي مواضع كوچك .

ب) تعمير قطعات مستهلك كه از نظر اقتصادي يا عدم دسترسي به تكنولوژي ساخت آنها بهتر است كه از طريق جوشكاري بازسازي شوند . اين مورد خود دو حالت دارد : قطعات شكسته شده و قطعات سائيده شده و يا خورده شده .

ج) اتصال دو يا چند قطعه كه ريختگي آن به صورت واحد با مشكلاتي همراه بوده يا از نظر اقتصادي مقرون به صرفه نيستند .

جوشهاي انجام شده در موارد فوق از نظر كلي سه مشخصه ي زير را دارند :

1-  جوش هاي تحت تنش ، كه بايد موضع جوش داده شده داراي حداقل خواص مكانيكي مورد نظر بوده يا با بقيه قطعه برابري كند .

2- جوشهايي كه تحت تنش قرار نمي گيرند و خواص مكانيكي آنها قابل مقايسه با قطعه ي مورد نظر نياز نيست . غالباً قابليت ماشين كاري و در بعضي موارد تطابق رنگ موضع جوش داده شده با بقيه ي قطعه لازم است . اين حالت بيشتر در تعميرات بعضي عيوب قطعات ريختگي مورد نظر است .

3-  مقاومت سطحي در مقابل خوردگي ، سائيدن ، خراش و اصطكاك  در موضعي كه فلز جوش رسوب داده شده ، درخواست مي شود . در اين موارد از فلز پركننده خاصي با تركيب شيميايي ويژه استفاده مي شود كه بيشتر در مواضع سائيده شده قطعات چدني مستهلك ، يا بالا بردن كارآيي قطعات چدني نو كاربرد دارد .


دسته بندی : جوشکاری

کارگاه ریخته گری و آزمایشگاه ماسه

از گذشته های دور تاکنون از روش ریخته گری برای تولید فلزات و آلیاژهای مختلف استفاده  میشود. امروزه با توجه به جنس آلیاژ ریختگی و همچنین شکل و ابعاد قطعات ریختگی روش هایمختلفی برای ریخته گری فلزات مهندسی وجود دارد که به تعدادی از مهم ترین آنها اشاره میشود:

 مهندسي مواد

با توجه به این که ماسه خاصیت دیرگدازی دارد، معمولاً از آن برای تهیه محفظه قالب ریخته گری استفاده می شود.روش های مختلفی برای ایجاد استحکام در مخلوط ماسه استفاده میشود که در ذیل به مهمترین آنها اشاره شده است:

1- ریخته گری در قالب ماسه ای

1-1- ریخته گری ماسۀ تر  که معمولاً برای ریخته گری چدن ها و مخصوصاً چدن های خاکستری استفاده می شود. برای حفظ استحکام بین ذرات ماسه از چسب بنتونیت استفاده می شود. مهندسي مواداین چسب با استفاده از آب فعال می شود. مهمترین ویژگی این روش ریخته گری این است که گیرایی این چسب برای چندین بار برگشت پذیر است و لذا فرایندهای ریخته گری با ماسۀ تر از نظر اقتصادی بسیار مقرون به صرفه است.

2-1- ریخته گری ماسه 2CO : در این روش از ریخته گری برای حفظ استحکام ماسه ها از چسب سیلیکات سدیم استفاده می شود. برای اینکه این چسب گیرایی خوبی داشته باشد، از دمش گاز کربنیک استفاده می شود. قطعات بدست آمده با استفاده از این روش کیفیت سطحی  بسیار خوبی دارند، مهمترین مشکلات آنها عدم برگشت پذیری چسب سیلکات سدیم و هزینه تمام شده بالا است.

3-1- ریخته گری با ماسه فوران : در این روش برای حفظ استحکام ماسه معمولاً از رزین های آلی مانند  فنول فورمالدئید استفاده می شود. این رزین ها در حضور مواد کاتالیزور که اغلب اسیدهای آلی هستند، گیرایی خود را بدست می آورند.

2- ریخته گری در قالب های دائمی

می توان از قالب های فلزی که اغلب از جنس چدن خاکستری است به عنوان محفظه قالب ریخته گری استفاده نمود. این قالب ها که معمولاً با استفاده از سیستم آب گردشی خنک می میشوند، بعد از هر بارریزی ، مجدداً برای دفعات زیادی قابل استفاده هستند. مهمترین محدودیت این روش ، نوع مذاب ریخته گری و شکل قطعات ریختگی است و محدودیت آن ریخته گری آلیاژهای با دمای ذوب بالا می باشد.

3- ریخته گری دایکاست

برای ریخته گری فلزاتی که نقطه ذوب کمی دارند ، مانند آلیاژهای آلومینیوم ، روی و سرب معمولاً از این تکنیک استفاده می شود. در این روش که خود انواع مختلفی دارد ، مذاب با فشار وارد محفظه قالب شده و پس از انجماد از قالب خارج می شود. مزیت این روش سرعت تولید بالا و امکان تولید قطعات با ابعاد کوچک است.

4- ریخته گری دقیق

از این روش معمولاً برای تولید قطعات ریخته گری کوچک با دقت ابعادی زیاد و در تولید انبوه استفاده می شود. ابتدا شکل قطعات ریختگی داز جنس موم تهیه شده و پس از غوطه وری این قطعات موم در دوغاب های سرامیکی متعدد و خشک کردن آنها ، موم در اثر گرما و فشار در قالب سرامیکی خارج می شود. پی از آن مذاب در داخل قالب سرامیکی ریخته گری می شود. 

* دانشجویان دورۀ کارشناسی گرایش متالورژی صنعتی پس از گذراندن درس ریخته گری 1 (3 واحد نظری ) آزمایشگاه ماسه و کارگاه ریخته گری را می گذرانند. آنها در این درس عملی یک واحدی با موضوعات زیر مواجه می شوند :

- آشنایی با کوره های ذوب ریخته گری ، روش تهیه شارژ  و روش تصفیه سرباره گیری و روش باریزی

- آشنایی با انواع مدل های ریخته گری و روش های ساخت آن

 - آشنایی و کسب مهارت های اولیه با انواع روش های قالب گیری در ماسه مانند ماسه تر و ماسه 2CO

- آشنایی با ماهیچه های قالب گیری و کسب مهارت اولیه برای استفاده از آنها

- آشنایی با انواع سیستم های راهگاهی (فشاری و غیر فشاری ) ، مبردها و تغذیه ها .

- آشنایی با ریخته گری آلیاژهای مهندسی مختلف مانند انواع چدن ها (خاکستری ، نشکن ، آلیاژ برنج  و آلیاژهای آلومینویم )

- آشنایی با عیوب ریخته گری مانند مک های انقباضی ، مک های گازی ، ترک های داغ ، نیامد و ...

آشنایی با روش های جوانه زایی از قبیل ارتعاش ، مواد جوانه زا ، فوق تبرید و ... و نقش این عوامل بر روی اندازه دانه های بلوری فلزات که این می تواند روی خواص مکانیکی فلز تاثیر به سزایی داشته باشد.

* گاهی اوقات دانشجویان دوره کارشناسی ارشد و دکتری نیز برای گذراندن قسمتی از پایان نامه های تحصیلی خود از امکانات این آزمایشگاه استفاده می کنند.

دسته بندی : مصالح ذوب وریخته گری

شکست خستگی

مقدمه
از سال 1850معلوم شده است که فلز تحت تنش تکراری با نوسانی،در تنشی به مراتب کمتر از تنش لازم لازم برای شکست در اثر یک مرتبه اعمال بار ، خواهد شکست.شکستهایی که در شرایط بارگذاری دینامیک رخ می دهند شکستهای خستگی نامیده میشوند. که این نامگذاری احتمالا مبتنی بر این دلیل است که به طور کلی مشاهده می شود شکستها فقط پس از یک دوره کار زیاد رخ می دهند.هیچگونه تغییر واضحی در ساختار فلزی که به علت خستگی می شکند وجود نداردتا بتوان به عنوان مدرکی برای شناخت دلایل شکست خستگی از آن استفاده کرد. با پیشرفت صنعت و افزایش تعداد وسایلی از قبیل خودرو ، هواپیما،کمپرسور،پمپ،توربین و غیره که تحت بارگذاری تکراری و ارتعاشی هستند،خستگی بیشتر متداول شده و اکنون چنین برداشت می شود که عامل حداقل 90درصد شکستهای ناشی از دلایل مکانیکی حین کار خستگی باشد.
تئوری شکست
دلیل عمده خطرناک بودن شکست خستگی این است که بدون آگاهی قبلی و قابل رویت بودن رخ می دهد.خستگی به صورت شکستی با ظاهر ترد ،بدون هیچگونه تغییر شکل نا خالص در شکست نتیجه میشود.معمولاسطح شکست در مقیاس ماکروسکوپی بر جهت تنش کششی اصلی عمود است.معمولا سطح شکست خستگی از ظاهر سطح شکست تشخیص داده میشود،که از یک ناحیه هموار حاصل از عمل سایش با اشاعه ترک در مقطع (قسمت بالای شکل 1) و یک ناحیه ناهموار که در هنگام عدم تحمل بار توسط مقطع ،در قطعه به صورت نرم شکسته شده است تشکیل می شود.غالبا پیشرفت شکست توسط یک دسته حلقه نشان داده می شود،که از نقطه شروع شکست به طرف داخل پیشرفت می کند.شکل 1مشخصه دیگری از خستگی را نیز نشان میدهد و آن اینست که معمولا شکست در نقطه وجود تمرکز تنش ، مانند یک گوشه تیز یا شیار ،یا در یک تمرکز تنش متالورژیکی مانند ناخالصی ،رخ می دهد.
سه عامل عمده برای وقوع شکست خستگی ضروری هستند.این عوامل عبارتند ازSad1)تنش کششی حداکثری به مقدار بسیار زیاد، (2)تغییرات به حد کافی زیاد یا نوسانی در تنش وارده،و(3)زیاد بودن چرخه های تنش وارده. علاوه بر این متغیرهای دیگری مانندتمرکز تنش ،خوردگی،دما،بار اضافی ،ساختار متالورژیکی،تنشهای باقیمانده و تنشهای مرکب هم وجود دارند که شرایط را برای ایجاد خستگی تقویت می کنند.
چون هنوز مفهومی کلی از علت بروز خستگی در فلزات به دست نیاورده ایم ،لازم است بعضی از این عوامل را از دیدگاه اساسا تجربی مورد بحث قرار دهیم.به علت زیاد بودن حجم اطلاعاتی از این قبیل ،فقط تشریح نکات برجسته ممکن خواهد بود.
چرخه های تنش
ابتدا تعریف مختصری از انواع کلی تنشهای نوسانی که باعثی خستگی می شوند،بیان می کنیم شکل2 چرخه های نمونه ای تنش خستگی را نشان می دهد.شکل 2(الف) چرخه کاملا معکوس تنش سینوسی شکلی را نشان می دهد. این چرخه یک حالت آرمانی است که توسط دستگاه خستگی محور چرخان مور تو.لید شده و در عمل از چرخش محوری با سرعت ثابت و بدون اضافه بار به دست می آید.در این نوع چرخه تنش، تنشهای حداقل و حداکثر برابرند. تنش حداقل همان کمترین تنش جبری در چرخه است . تنش کششی مثبت در نظر گرفته میشود و تنش فشاری منفی است.
شکل 2(ب) یک چرخه تنش تکراری را نشان می دهد که در آن تنش حداکثر و تنش حداقل برابر نیستند. در این نمودار هر دو تنش کششی اند. ولی یک چرخه تنش تکراری می تواند شامل تنشهای حداقل و حداکثر با علامت مخالف یا هر دو در فشار نیز باشد.شکل 2(پ) چرخه تنش مرکبی را نشان می دهد که در قطعه ای مانند بال هواپیما و در اثر تند بادها تحت بارهای اضافی دوره ای غیر قابل پیش بینی قرار می گیرد.
خصوصیات ساختاری خستگی
در مطالعات تغییرات ساختاری اصلی در فلزی که به آن تنش چرخه ای اعمال می شود، فرایند خستگی برای سهولت درک به مراحل زیر تقسیم شده است:
1. شروع ترک : شامل ایجاد اولیه عیب خستگی که با عملیات تابانیدن مناسب برطرف می شود.
2. رشد ترک نوار لغزش :عبارت است از عمیق شدن ترک اولیه روی صفحات با تنش برشی زیاد، این مرحله غالبا رشد ترک مرحله 1 نامیده می شود.
3. شکست ترک روی صفحاتی با تنش کششی زیاد: عبارت است از رشد یک ترک معین در جهت عمد بر تنش کششی حداکثر . این مرحله معمولا رشد ترک مرحله 2 نامیده می شود.
4. شکست نرم نهایی: هنگامی رخ می دهد که طول ترک به اندازه کافی برسد، طوری که سطح مقطع باقیمانده نتواند بار وارده را تحمل کند.

سهم نسبی هر مرحله از کل چرخه های مسبب شکست به شرایط آزمایش و ماده بستگی دارد. اما کاملا مشخص شده است که یک ترک خستگی می تواند قبل از اینکه 10درصد عمر کل نمونه منقضی شود، شکیل شود.البته در تصمیم گیری در مورد زمانی که یک نوتر لغزش عمیق شده می تواند ترک نامیده شود، ابهام زیادی وجود دارد . به طور کلی ،سهم بیشتری از کل چرخه های مسبب شکست به اشاعه ترکهای مرحله2 در خستگی کم چرخه تعلق دارد تا خستگی پر چرخه، در صورتی که رشد ترک در مرحله 1 برای خستگی پرچرخه و تنش کمن ،بیشتر است . اگر تنش کششی زیاد باشد، مانند خستگی در نمونه های با شیار تیز ، رشد ترک مرحله 1 به هسچ وجه قابل مشاهده نیست.
بررسی ساختاری دقیق خستگی این واقعیت را نشان می دهد که معمولا ترکهای خستگی در یک سطح آزاد شروع می شوند . در موارد نادری که ترکهای خستگی از قسمت داخلی شروع می شوند، همیشه مرزی ، مانند حد فاصلیک لایه سطحی کربوره شده و فلز اصلی ،باید وجود داشته باشد.
خستگی شباهتهایی با جریان مومسان و شکست تحت تغییرشکل تک جهتی یا ایستا دارد. بررسیهای گوف نشان داده است که فلز تحت کرنش چرخه ای توسط لغزش بر صفحات اتمی مشابه و در همان جهات بلور شناسی کرنش تک جهتی تغییرشکل می دهد. در حالی که لغزش در تغییر شکل تک جهتی معمولا در تمام دانه ها منتشر می شود، در خستگی فقط در بعضی دانه ها خطوط لغزش مشاهده می شود و در دانه های دیگر هیچ اثری از لغزش وجود ندارد. به طور کلی خطوط لغزش هنگام چند هزار چرخه اول تنش تشکیل می شوند.چرخه های پی در پی خطوط لغزش اضافی تولید می کنند، ولی تعداد خطوط لغزش مستقیما با تعداد چرخه های تنش مناسب نیست. لغزش قابل رویت در بسیاری از فلزات خیلی زود به مقدار اشباع می رسد، که این امر به صورت نواحی پیچیده ای از لغزش سنگین موازی با آنچه به طور طبیعی یک نوار لغزش بود، مشاهده می شود. نوترهای لغزش حین خستگی به معنای تشکیل ترک نخواهد بود.
یک جنبه مهم ساختاری که به نظر می رسد منحصر به تغییر شکل خستگی باشد،تشکیل سطحی از برآمدگی و شیار است که فرورفتگیهای نوارلغزش و بر آمدگیهای نوار لغزش نامیده می شود.انجام عملیات فلز نگاری خیلی دقیق بر قسمتهای مخروطی سطح نمونه نشان داده است که ترکهای خستگی در مکانهای فرورفتگی و بر آمدگی شروع می شوند.تجربیات زیادی نشان می دهند که لغزش متقاطع در فرایند ایجاد بر آمدگی اهمیت زیادی دارد.مثلا تولید شکست خستگی در بلورهای یونی ویژه ای که به سادگی لغزش متقاطع نمیکنندمشکل بوده و تولید شکست خستگی در بلورهای روی که طوری جهتدار می شوند تا فقط به صورت لغزش آسان تغییر شکل دهند نیز خیلی مشکل است . از طرف دیگر در آلومینیوم خالص ،که لغزش متقا طع آن بینهایت ساده است، برآمدگی نوار لغزش ایجاد نمی شود (بر خلاف بیشتر آلیاژهای آلومینیم).
هال و کاترل مکانیزمی برای تشکیل برآمدگیها و فرورفتگیها پیشنهادکرده اند. شکل 3 نشان می دهد که این مکانیزم به انجام لغزش پی در پی عمل می کنند تا دو پله سطحی تولید شود{شکل 3 (ب و پ)}. هنگامی که تنش فشاری می شود، روی اولین سیستمی که شروع به کار می کند فرورفتگی توسط لغزش تشکیل می شودشکل 3(ت) و هنگامی که سایر سیستمهای لغزش به کار می افتند،برآمدگی تشکیل می شود{شکل3(ث)}.
اثر سطح و خستگی
عملا تمام شکستهای خستگی از سطح شروع می شوند. در بسیاری از انواع متداول بارگذاری ،مانند خمش و پیچش،تنش حداکثر در سطح رخ می دهد ،طوری که شروع شکست از آن مکان منطقی جلوه می کند . اما در بارگذاری محوری، شکست خستگی تقریبا همیشه از سطح شروع می شود. مدارک فراوانی حاکی از اینکه خواص خستگی به شرایط سطحی بسیار حساس هستند در دست است. عواملی که در سطح یک نمونه خستگی تاثیر می گذارند عمدتا به سه دسته تقسیم می شوندSad1) نا همواری سطح یا منابع تنش سطحی،(2) تغییر استحکام خستگی فلز سطحی، و (3) تغییرات شرایط تنش باقیمانده در سطح، علاوه بر این ،سطح فلز در معرض اکسایش و خوردگی نیز قرار دارد.
اثر متغیرهای متالورژیکی بر خستگی
خواص خستگی فلزات کاملا به ساختار حساس است.اما در حال حاضر،روشهای محدودی وجود داردکه توسط آنها می توان خواص خستگی را از طرق متالورژیکی بهبود بخشید.
تغییرات طراحی به نحوی که تمرکز تنش کم شود و استفاده صحیح از تنش باقیمانده فشاری مفید به جای تغییر جنس از کارهای عمده ای است که در خواص خستگی بهبود ایجاد می کند.با اینحال عوامل متالورژیکی ویژه ای وجود دارند که برای اطمینان از بهترین کارایی در اندازه گیری یک فلز یا آلیاژ خاص باید در نظر گرفته شوند.آن آزمایشهای خستگی که برای خستگی طراحی شده اند، معمولا با نمونه های صاف پرداخت شده و در شرایط تنش کاملا معکوس انجام می شوند. عموما فرض می شود هرگونه تغییری در خواص خستگی به علت عوامل متالورژیکی، مشابه همان مقدار تغییری است که در شرایط خستگی مرکب ، مانند نمونه های شیار دار تحت تنشهای مرکب ، رخ می دهد،البته این نکته همیشه یا شرایطی که در مورد نتایج حساسیت به شیار مطابقت ندارد.
غالبا خواص خستگی به خواص به خواص خستگی به خواص کششی وابسته اند. به طور کلی حد خستگی فولادهای ریخته شده و کار شده تقریبا 50 درصد استحکام نهایی کشش است . نسبت حد خستگی به استحکام کششی نسبت خستگی نامیده می شود. نسبت خستگی فلزات غیر آهنی مانند نیکل ،مس و منیزیم در حدود 35درصدخواهد بود. اما با زیاد شدن استحکام تسلیم توسط مکانیزمهای استحکامدهی مختلف ، معمولا حد خستگی به طور متناسب با آن زیاد نمی شود. اکثر مواد با استحکام زیاد، در برابر خستگی با محدودیت مواجه اند.
رابطه عمر خستگی با اندازه دانه نیز به شیوه تغییر شکل بستگی دارد. بیشترین تاثیر اندازه دانه بر عمر خستگی در شرایط چرخه زیاد و تنش کم است که در آن ایجاد ترک مرحله 1 مسلط است. در موادی با انرژی خطای انباشتگی زیاد(مانند آلومینیوم و مس) ساختارهای سلولی به سادگی به وجود آمده و اشاعه ترک مرحله 1را کنترل می کند را کنترل می کند. بنابراین ساختار سلول نابجایی ، اثر اندازه دانه را می پوشاند و عمرخستگی در تنش ثابت به اندازه حساس نیست. اما در ماده ای با انرژی خطای انباشتگی کم (مانند برنج آلفا)، عدم وجود ساختار سلولی به دلیل لغزش مسطح باعث می شود مرزهای دانه آهنگ ایجاد ترک را کنترل کنند. در این حالت، عمرخستگی با 2/قطر دانه متناسب است.
اثر دما بر خستگی
آزمایشهای خستگی فلزات در دماهای کمتر از دمای اتاق نشان می دهد که استحکام خستگی با کاهش دما زیاد می شود. با اینکه فولادها در حالت خستگی در دمای کم به شیار حساستر می شوند،هیچ دلیلی برای نشان دادن وقوع هر گونه تغییر ناگهانی در خواص خستگی در دما های کمتر از دمای انتقال تردی به نرمی وجود ندارد . این واقعیت که با کاهش دما استحکام خستگی نسبتا بیشتر از استحکام کششی افزایش می یابد، با نشان دادن شکست خستگی در دمای اتاق که با تشکیل و تمرکز جای خالی همراه است، توجیه می شود.
به طور کلی ، هرچه استحکام خزش ماده ای بیشتر باشد ،استحکام خستگی آن ماده در دمای زیاد بیشتر است. اما آن عملیات متالورژیکی که باعث ایجاد بهترین خواص خستگی در دمای بالا می شود لزوما به ایجاد بهترین مشخصات پارگی در خزش منجر نخواهد شد. این مطلب از سوی تولین و ماچل و با آزمایشهایی که در دمای زیاد بر تعدادی ابر آلیاژ انجام شد ،نشان داده شده است . در دمای کمتر ریز بودن اندازه دانه خواص خستگی بین مواد درشت دانه و ریز دانه کم می شود تا در دماهای زیاد،که خزش مسلط است،مواد درشت دانه استحکام بیشتری دارند. به طور کلی ، گرچه اغلب قطعات ریختگی به خزش مقاومترند، ولی آلیاژهایی که بر آنها کار انجام شده باشد ،مقاومت به خستگی بهتری نشان می دهند .امکان دارد روشهایی که در کاهش شکستهای خستگی در دمای اتاق مفیدند ،برای خستگی در دمای بالا مفید نباشند. مثلا ممکن است قبل از اینکه دما به دمای عمل برسد ،تنشهای باقیمانده فشاری در اثر تابانیده شدن از بین بروند.
تنشهایی که باعث ایجاد شکست خستگی در دمای بالا می شوند ،لزوما نباید از منابع مکانیکی ناشی شده باشند. شکست خستگی می تواند در شرایطی که هیچ تنشی به دلایل مکانیکی تولید نمی شود،توسط تنشهای گرمایی نوسانی به وجود آید .تنشهای گرمایی وقتی به وجود می آیند که توسط قیدی از تغییر ابعاد یک قطعه به علت تغییر دما جلوگیری شود.
اگر شکست در اثر اعمال تنش گرمایی رخ دهد ، شرایط به شوک گرمایی موسوم است . اما اگر شکست پس از اعمال مکرر تنش گرمایی رخ دهد ، این حالت خستگی حرارتی نامیده میشود. غالبا در وسایلی که در دمای بالا کار می کنند ،شرایط ایجاد شکست در اثر خستگی گرمایی وجود دارد. فولاد زنگ نزن آستنیتی از فلزاتی است که خصوصا به دلیل هدایت گرمایی کم و انبساط گرمایی کم و انبساط گرمایی زیاد خود نسبت به این پدیده حساس است. از مطالعات انجام شده درباره خستگی گرمایی در این ماده مقالات منتشر شده زیادی موجود است.
خستگی خوردگی
کنش همزمان تنش چرخه ای و حمله شیمیایی به خستگی خوردگی موسوم است. حمله خورنده بدون حضور تنش غالبا در سطوح فلزی حفره ایجاد می کند . حفره ها مانند شیار عمل کرده و استحکام خستگی را کاهش می دهند. اما وقتی حمله خورنده همزمان با بار گذاری خستگی رخ دهد ، کاهش آشکاری در خواص خستگی نتیجه می شود که از کاهش خواصی که در اثر خوردگی قبلی سطح به وجود می آید ،بیشتر است . هنگامی که خوردگی و خستگی همزمان واقع شوند ،حمله شیمیایی سرعت اشاعه ترک خستگی را به شدت تسریع می کند.
برای به حداقل رساندن خسارت خستگی خوردگی چند روش وجود دارد. به طور کلی ،انتخاب هر ماده ای برای این نوع عملکرد به جای اینکه مبتنی بر خواص قراردادی خستگی باشد ، باید بر خواص مقاومت به خوردگی متکی باشد . بنابراین فولاد زنگ نزن ،برنز یا آلیاژ مس _ بریلیم، احتمالا بهتر از فولاد عملیات حرارتی عمل خواهند کرد. حفاظت از فلز در برابر تماس با محیط خورنده توسط روکشهای فلزی و غیر فلزی موثر است، به شرط آنکه روکش در اثر کرنش چرخه ای پاره نشود. روکشهای روی و کادمیم بر فولادو روکشهای آلومینیوم آلکلاد در بسیاری کاربردهای خستگی موثر هستند، حتی اگر این پوششها باعث شوند هنگام آزمایش در هوا استحکام خستگی کم شود . تشکیل تنشهای باقیمانده فشاری سطح از باز شدن شیارهای سطحی و وارد شدن ماده خورنده جلو گیری می کنند . به ویژه نیتریده کردن در مبارزه با خستگی موثر است و ساچمه زنی در شرایط خاص با موفقیت مورد استفاده قرار گرفته است . در سیستمهای بسته امکان کاهش حمله خوردگی با افزودن یک ممانعت کننده خوردگی وجود دارد . و بالاخره حذف تمرکزدهنده های تنش توسط طراحی دقیق در جایی که خستگی خوردگی باید در نظر گرفته شود،بسیار مهم است.
آزمونهای خستگی
آزمون خستگی ، آزمونی دینامیکی است که رفتار نسبی مواد را تحت نیرو های تکرار شونه یا کم و زیاد شونده تعیین می کند . در این آزمون شرایطی مشابه شرایط کارکرد برای اجزای ماشین که تحت نیروهای لرزشی یا نوسانی قرار دارند به وجود می آید . مقدار تنش (کشش ،فشار ،خمش یا پیچش) با دستگاه و بسته یه نمونه ی مورد آزمون تعیین می شود . نیروی اعمال شده بر نمونه طی آزمون مرتبا بین دو مقدار تغییر می کند ، که حداکثر نیرو معمولا کمتر از استحکام تسلیم ماده است . چرخه های تنش تا شکست نمونه یا رسیدن به تعداد چرخه ی معین ادامه می یابد.
در آزمایش خستگی ، معمولا حد تحمل آهن و فولاد10000000سیکل است ولی برای آلیاژهای غیر آهنی این مقدار ممکن است 500000000دور باشد.
سه آزمایش خستگی معروف عبارتند از :
آزمایش میله ی چرخان ،آزمایش با میله ی ارتعاشی و آزمایش خستگی کشش فشار
قطعات اصلی یک ماشین آزمایش خستگی عبارتند از:
1) یک محرک مکانیکی ،هیدرولیکی یا مغناطیسی برای وارد کردن سیکلهای تکراری تنش به نمونه
2) یک وسیله اندازه گیری تنشهای ماکزیمم و مینیمم وارد شده در جریان یک دور
3) یک شمارنده برای نشان دادن تعداد دورهای تنشی وارد شده بر نمونه
4) یک وسیله ی توقف خودکار ماشین آزمایش ، وقتی که نمونه می شکند.
یک ماشین خستگی با تیر یک سر آزاد چرخان در شکل4 دیده می شود.
نتیجه گیری
وقتی نمونه ای در یک ماشین کشش سنج می شکند ،تنش معین و مشخصی لازم است تا موجب شکستگی قطعه گردد . با اینحال ، نمونه ای از همان ماده وقتی در معرض بارهای چرخشی یا متناوبی قرار می گیرد ،تحت تنش بسیار کوچکتری خواهد شکست . بدین طریق ،یک محور ممکن است بعد از ماهها استفاده بشکند، حتی اگر بیشترین بار آن هم افزایش نیافته باشد. این نوع شکستگی در شکل 5 نشان داده شده است .فلزها از کریستالهای ریزی تشکیل شده اند که صفحات لغزش آنها در جهات گوناگون قرار دارند. هرگاه تنش به مقدار کافی برسد،عمل لغزش روی صفحات بلورین انفرادی رخ خواهد داد. در مرحله اول ممکن است این لغزش اشکالی ایجاد نکندولی با تکرار عمل لغزش ترکهای ریز تشکیل شده و گسترش پدا می کنند و در نتیجه سطح مقطع یک عضو نیز کاهش یافته بطوری که دیگر نیروی وارد شده را تحمل نخواهد کرد.در قسمت نهایی شکست ساختمان بلورین فلزی با قسمتهای مجاور مدتی ایجاد اصطکاک می کند. گاهی اوقات مقطع نهایی موجب اشتباه شدن نتیجه آزمایش می گردد ،زیرا که قطعه بعلت تبلور مجدد در جریان کار ،دارای دانه درشت شده و می شکند.این شکستها شکستهای خستگی هستند و در طراحی قطعاتی که در معرض تنشهای متغیری قرار دارند حد خستگی یک ماده غالبا مهمتر از مقاومت کششی یا مقاومت تسلیم آن است در سالهای اخیر اطلاعات جالبی بدست آمده است که به ما امکان می دهد فلزها را با اطمینان بیشتر و روش اقتصادی تر در ماشینهای دقیق و هواپیما های مافوق صوت مصرف کنیم . از عوامل مهم و عمده عمر خستگی بالا می توان پرداخت سطحی خوب ، عاری از خوردگی و کربن گیری را نام برد. استفاده از قطعاتی که به منظورافزایش تنش های فشاری نزدیک سطح نمونه نورد سرد یا ساچمه زده شده اند نیز عمر خستگی را زیاد می کند سطوح زبر شکاف دار یا شیار دار ،اغلب حد خستگی فلزها را کاهش می دهند.
واضح است که خمیدگی ها ،سوراخها ، شکافها و زاویه های مقعر تیز مواضعی برای تنشهای بالا و امکان شکست در قطعات ماشین محسوب می شوند . استفاده از فیلت های زیاد،گرد کردن انتهاهای جا خارها و چاک ها ،صافکاری گوشه ها و شانه ها و اجتناب از اثرات برشی ابزار تیز بنحو قابل ملاحظه ای عوامل بوجود آورنده ی تنش را حذف کرده و عمر خستگی را افزایش می دهند . هر گونه شیارها یا شکافهای تیز می توانند توزیع تنشه را تعییر داده و خواص فیزیکی یک ماده را اصلاح کنند و باعث شوند تا قطعات در برابر نیرو های وارده عکس العمل خوبی از خود نشان دهند

دسته بندی : متالورژی مکانیکی

ریخته گری دوغابی

نزدیک 150 سال است که تکنیک شکل دهی قطعات سرامیکی از طریق ریختن دوغاب در یک قالب متخلخل انجام میشود.

 

نزدیک 150 سال است که تکنیک شکل دهی قطعات سرامیکی از طریق ریختن دوغاب در یک قالب متخلخل انجام میشود.

در ابتدا هنوز نقش روان کنندگی املاح سدیم مشخص نشده بود و لذا دوغابهایی که مورد استفاده قرار می گرفتند نزدیک 40 تا 60 درصد آب داشتند. در اوایل قرن نوزدهم استفاده از کربنات سدیم به منظور ساخت دوغابی با حداقل آب مورد توجه قرارگرفت.با کاهش میزان آب در دوغاب ریخته گری:معایبی از قبیل انقباض زیاد قطعات:ترکهای ناشی از فرایند خشک شدن و زمان زیاد برای تولید قطعه از بین خواهد رفت.

ریخته گری دوغابی اساسا" به دو روش انجام میشود:

  1. ریخته گری باز
  2.  ریخته گری بسته

در روش ریخته گری باز که ضمنا" رایج ترین روش ریخته گری نیز هست : سوسپانسیون غلیظ به خوبی روان شده و داخل یک قالب گچی ریخته شده و شکل مورد نظر را به خود میگیرد.به دلیل جذب آب قالب گچی یک لایه تقریبا" متراکم از دوغاب مورد نظرتشکیل شده و مابقی دوغاب اضافی از قالب خارج میگردد و قطعه خام به دلیل انقباض جزیی که در آن به وجود می آید از قالب خارج میشود.

در روش ریخته گری بسته:دوغاب آنقدر در داخل قالب گچی میماند تا تمام قسمت های داخلی آن اصطلاحا" ((میبندد)) و قطعه ای توپر به وجود می آید.

عمده ترین امتیاز روش ریخته گری دوغابی نسبت به سایر روش های دیگر امکان شکل دهی قطعات بزرگ و پیچیده است در حالیکه شکل دهی چنین قطعاتی با روش های دیگر تولید تقریبا" غیر ممکن است.

اما معایب روش ریخته گری مجموعا" بیشتر از مزایای آن است.از جمله معایب آن میتوان به زمان زیاد برای تولید:کیفیت کم در قطعه تولید شده: تلرانس ابعادی زیاد در قطعه تولید شده و ... را نام برد.

در گام اول از توضیحات بالا میتوان فهمید که عوامل مختلفی در شکل گیری لایه ریخته گری شده نقش دارند.عواملی چون : دانسیته دوغاب، میزان آب موجود در دوغاب، میزان تخلخل در قالب گچی، زمان، فشار سیستم، آنالیز بدنه، دانه بندی دوغاب و ... ؛ حتی عوامل جزیی دیگری نظیر دمای سیستم، میزان رطوبت در قالب گچی، توزیع تخلخل در قالب گچی و... نیز در ضخامت لایه ریخته گری شده موثر هستند.

برای فهم اساسی شکل گیری یک دوغاب سرامیکی ابتدا باید به تعامل بین ذرات رسی و آب اشاره کرد.به عبارت دیگر ابتا باید سیستم رس-آب مورد بررسی قرار گیرد.

ذرات رسی به هنگام معلق شدن در آب ممکن است دو رفتار کاملا" متمایز از خود نشان دهند. با توجه به بار الکترو استاتیکی سطحشان: رس ها یا جذب یکدیگر شده و یا یکدیگر را دفع میکنند.

به بیان واضح تر ذرات رس در محیط اسیدی یکدیگر را به صورت لبه به سطح جذب کرده که اصطلاحا" حالت ((فلکولاسیون)) در دوغاب به وجود می آید. یا اینکه در محیط قلیایی به صورت سطح به سطح یکدیگر را دفع میکنند و اصطلاحا"حالت ((دفلکولاسیون)) به وجود می آورند.

در حالت فلکوله جاذبه لبه به سطح در ذرات باعث بالا رفتن ویسکوزیته دوغاب میشود و در حالت دفلکوله دافعه سطح به سطح ذرات باعث کاهش ویسکوزیته و روانی دوغاب رسی می شود.

تئوری لایه مضاعف و پتانسیل زتا

طبق این تئوری سطح رس از دو لایه بار دار تشکیل شده است.لایه داخلی دارای بار منفی بوده لایه خارجی بار مثبت دارد. بارهای منفی لایه داخلی همان بارهای خنثی نشده سطح رس هستند. بارهای مثبت لایه خارجی ناشی از کاتیون هایی است که سطح رس جذب می کند. در حالت معلق شدن ذرات رسی در آب: ملکول های قطبی آب نیز توسط لایه داخلی جذب می شوند.

باید توجه داشت که ملکول های قطبی آب به صورت منظم جذب سطح رس می شوند یعنی سر مثبت آنها در طرف لایه داخلی بوده و سر منفی آنها به سمت خارج است.

در فاصله x از سطح رس، میزان بار منفی سطح، توسط بارهای مثبت خنثی می شود.میزان بار الکتریکی در مرز x با عنوان جنبش الکتریکی یا همان ((پتانسیل زتا)) معرفی می شود.

میزان پتانسیل زتا عملا" مشخص کننده روانی یا انعقاد دوغاب است.روانی یا انعقاد دوغاب نیز تاثیر مستقیم بر ضخامت لایه ریخته گری شده دارد.

در همینجا اهمیت میزان آب موجود در دوغاب و دانسیته دوغاب در ضخامت لایه ریخته گری شده مشخص میشود.

قالب گچی

قالب گچی به عنوان یکی از عوامل مهم درضخامت لایه ریخته گری شده میباشد. میزان تخلخل قالب گچی، توزیع این تخلخل، قطر تخلخل های موجود و حتی میزان رطوبت قالب گچی تاثیر مهمی در ضخامت لایه ریخته گری شده دارند.

در شکل زیر رابطه بین سرعت ریخته گری(نسبت ضخامت لایه ریخته گری شده به زمان) و نسبت میزان آب به گچ(میزان تخلخل قالب گچی) دیده می شود.میتوان دید که در نسبت های حدود 80% درصد، بهترین سرعت ریخته گری حاصل میشود.علت افت شدید سرعت ریخته گری درتخلخل های بالاتر مربوط به پیوستن تخلخل ها به هم و بزرگ شدن قطر آنها می شود.با بزرگ شدن قطر تخلخل ها پدیده اسمز و جذب آب قالب گچی کاهش می یابد.

میزان رطوبت قالب گچی به عنوان لایه مقاومت کننده ای در مقابل جذب آب مطرح است.همچنین باید به میزان مقاومت خود ضخامت x نیز در مقابل جذب آب توجه شود.

مکانیزم های ریخته گری دوغابی

در ریخته گری دوغابی نیروی فشاری پیش برنده فرآیند مجموع میزان فشار کاپیلاری هایی که بخاطر فشار مکش قالب و یا هر گونه فشار اضافی که به سیستم وارد میشود و یا خلاء که به قالب اعمال می شود می باشد. اندازه فشار کاپیلاریها از طریق اندازه گیری میزان اندازه تخلخلهای داخل قالب، میزان نیروی کششی سطح مایع پخش شده و زاویه تماس با تخلخلهای جداره می باشد. گزارش شده است که قالبهای گچ پاریس فشار مکشش در حدود 0.1-0.2 MPa می باشد. در عین حال، مقاومتی بخاطر حرکت مایع جذب شده در طول ساختمان تخلخل در حین تشکیل جداره ریخته گری ایجاد می شود. شکل زیر بطور شماتیک نشان دهنده این موقعیتها است.

برای آنالیزه کردن سینتیک ریخته گری دوغابی محققین زیادی مطالعه کرده اند. آقای Mcdowall و همکارانش از اثر قالب گچی و مقدار کنترل آن بروی فشار مکشش صرفنظر کردند و محاسبه کردند که فشاری که بر شکل گیری لایه ریخته گری شده وارد می شود برابر با فشار مکش می باشد. از طرف دیگر دیگر دانشمندان فشار اعمال شده قالب تر را وارد فرمول کردند.

Lm میزان عمق ترشده قالب، Lc هم متناسب با میزان مایعی است که توسط قالب جذب شده است و هم میزان سینتیک پرابولیک ایجاد شده می باشد. بنابراین محاسبه اینکه مقدار تخلخل قالب نزدیک لایه ریخته گری شده بطور اشباع از مایع پر شده است برابر خواهدبود با:

بطوریکه PT-Pl افت فشار در حین انجام فرآیند و Pl-P0 افت فشار در قسمت تر شده قالب گچی است ، و Xm مقاومت مخصوص تخلخلهای قالب ε0 می باشد. مقدار فشار مکش قالب برابر با PT-P0 است. بنابراین خواهیم داشت.

از طرف دیگری در بعضی از منابع آمده است که :

فشار در مرز قالب گچی تقریبا برابر با فشار مکش تخلخل، P، است و تقریبا برابر است با مقدار فشار از رابطه ، است و تقریبا برابر است با مقدار فشار از رابطه Laplac که :

P=Sσcosγ

که در آن S طیح ویژه گچ، σ کشش سطحی آب و γ زاویه تماس است. ( cosγ=1 چراکه گچ کاملا با آب تر می شود) بنابراین فشار مکشش آب در کاپیلار گچ بین 0.03 تا 0.1MPa متغییر می باشد.

ریخته گری دوغابی بیشتر در تولید لایه های نازک در حدود 15mm مورد استفاده می شود چرا که سرعت ریخته گری بطور تحمیل شونده‌ای تابع مقاومت هیدرولیک می باشد.

تاثیر پرامترهای فرایند ریخته گری دوغابی بروی سرعت ریخته گری از طریق یک مدل فیلتراسیون سینتیکی که بر پایه شکل شماتیک زیر می باشد مشخص شد.

 مدل پیش بینی می کند که سرعت افزایش ضخامت با گذشت زمان برابر خواهد بود بود با:

 که در آن :

mc ξ ضخامت لایه ریخته گری، t زمان ، P فشار نهایی موثر در فیلتراسیون و sξ چگونگی فصل مشترک سوسپانسیون-هوا در زمان فیلتراسیون ξm چگونگی فصل مشترک کیک-هوا در قالب گچی و η ویسکوزیته سوسپانسیون، c کسر حجمی ذرات جامد سوسپانسیون و n فاکتور توازن جرمی است.

تحقیقاتی نیز از طریق شبکه هوش مصنوعی بروی عوامل موثر یر زمان ریخته گری شده است که بطور خلاصه در نمودار زیر خلاصه می شود.


دسته بندی : مصالح ذوب وریخته گری

فولاد

 

تصویر



 

اصطلاح فولاد (Steel) برای آلیاژهای آهن که تا حدود 1،5 درصد کربن دارند و غالبا با فلزهای دیگر همراهند، بکار می‌رود. خواص فولاد به درصد کربن موجود در آن ، عملیات حرارتی انجام شده بر روی آن و فلزهای آلیاژ دهنده موجود در آن بستگی دارد.

کاربرد انواع مختلف فولاد

از فولادی که تا 0.2 درصد کربن دارد، برای ساختن سیم ، لوله و ورق فولاد استفاده می‌شود. فولاد متوسط 0.2 تا 0.6 درصد کربن دارد و آن را برای ساختن ریل ، دیگ بخار و قطعات ساختمانی بکار می‌برند. فولادی که 0.6 تا 1.5 درصد کربن دارد، سخت است و از آن برای ساختن ابزارآلات ، فنر و کارد و چنگال استفاده می‌شود.

ناخالصی‌های آهن و تولید فولاد

آهنی که از کوره بلند خارج می‌شود، چدن نامیده می‌شود که دارای مقادیری کربن ، گوگرد ، فسفر ، سیلیسیم ، منگنز و ناخالصی‌های دیگر است. در تولید فولاد ، دو هدف دنبال می‌شود:


  1. سوزاندن ناخالصی‌های چدن

  2. افزودن مقادیر معین از مواد آلیاژ دهنده به آهن

منگنز ، فسفر و سیلیسیم در چدن مذاب توسط هوا یا اکسیژن به اکسید تبدیل می‌شوند و با کمک ذوب مناسبی ترکیب شده ، به صورت سرباره خارج می‌شوند. گوگرد به صورت سولفید وارد سرباره می‌شود و کربن هم می‌سوزد و منوکسید کربن (CO) یا دی‌اکسید کربن (CO2) در می‌آید. چنانچه ناخالصی اصلی ، منگنز باشد، یک کمک ذوب اسیدی که معمولا دی‌اکسید سیلسیم (SiO2) است، بکار می‌برند:


(MnO + SiO2 -------> MnSiO3(l


و چنانچه ناخالصی اصلی ، سیلسیم یا فسفر باشد (و معمولا چنین است)، یک کمک ذوب بازی که معمولا اکسید منیزیم (MgO) یا اکسید کلسیم (CaO) است، اضافه می‌کنند:


(MgO + SiO2 -------> MgSiO2(l


 

(6MgO + P4O10 -------> 2Mg3(PO4)2(l


 

کوره تولید فولاد و جدا کردن ناخالصی‌ها

معمولا جداره داخلی کوره ای را که برای تولید فولاد بکار می‌رود، توسط آجرهایی که از ماده کمک ذوب ساخته شده‌اند، می‌پوشانند. این پوشش ، مقداری از اکسیدهایی را که باید خارج شوند، به خود جذب می‌کند. برای جدا کردن ناخالصی‌ها ، معمولا از روش کوره باز استفاده می‌کنند. این کوره یک ظرف بشقاب مانند دارد که در آن 100 تا 200 تن آهن مذاب جای می‌گیرد.

بالای این ظرف ، یک سقف مقعر قرار دارد که گرما را روی سطح فلز مذاب منعکس می‌کند. جریان شدیدی از
اکسیژن را از روی فلز مذاب عبور می‌دهند تا ناخالصی‌های موجود در آن بسوزند. در این روش ناخالصیها در اثر انتقال گرما در مایع و عمل پخش به سطح مایع می‌آیند و عمل تصفیه ، چند ساعت طول می‌کشد. البته مقداری از آهن ، اکسید می‌شود که آن را جمع‌آوری کرده ، به کوره بلند باز می‌گردانند.

مواد


 

روش دیگر جدا کردن ناخالصی‌ها از آهن

در روش دیگری که از همین اصول شیمیایی برای جدا کردن ناخالصی‌ها از آهن استفاده می‌شود، آهن مذاب را همراه آهن قراضه و کمک‌ذوب در کوره‌ای بشکه مانند که گنجایش 300 تن بار را دارد، می‌ریزند. جریان شدیدی از اکسیژن خالص را با سرعت مافوق صوت بر سطح فلز مذاب هدایت می‌کنند و با کج کردن و چرخاندن بشکه ، همواره سطح تازه‌ای از فلز مذاب را در معرض اکسیژن قرار می‌دهند.

اکسایش ناخالصی‌ها بسیار سریع صورت می‌گیرد و وقتی محصولات گازی مانند CO2 رها می‌شوند، توده مذاب را به هم می‌زنند، بطوری که آهن ته ظرف ، رو می‌آید. دمای توده مذاب ، بی آنکه از گرمای خارجی استفاده شود، تقریبا به دمای جوش آهن می‌رسد و در چنین دمایی ، واکنشها فوق‌العاده سریع بوده ، تمامی‌ این فرایند ، در مدت یک ساعت یا کمتر کامل می‌شود و معمولا محصولی یکنواخت و دارای کیفیت خوب بدست می‌آید.

تبدیل آهن به فولاد

آهن مذاب تصفیه شده را با افزودن مقدار معین کربن و فلزهای آلیاژ دهنده مثل وانادیم ، کروم ، تیتانیم ، منگنز و نیکل به فولاد تبدیل می‌کنند. فولادهای ویژه ممکن است مولیبدن ، تنگستن یا فلزهای دیگر داشته باشند. این نوع فولادها برای مصارف خاصی مورد استفاده قرار می‌گیرند. در دمای زیاد ، آهن و کربن با یکدیگر متحد شده ، کربید آهن (Fe3C) به نام «سمانتیت» تشکیل می‌دهند. این واکنش ، برگشت‌پذیر و گرماگیر است:


Fe3C <------- گرما + 3Fe + C




هرگاه فولادی که دارای سمانتیت است، به‌کندی سرد شود، تعادل فوق به سمت تشکیل آهن و کربن ، جابجا شده ، کربن به‌صورت پولکهای گرافیت جدا می‌شود و به فلز ، رنگ خاکستری می‌دهد. برعکس ، اگر فولاد به سرعت سرد شود، کربن عمدتا به شکل سمانتیت که رنگ روشنی دارد، باقی می‌ماند. تجزیه سمانتیت در دمای معمولی به اندازه‌ای کند است که عملا انجام نمی‌گیرد.

فولادی که دارای سمانتیت است، از فولادی که دارای گرافیت است، سخت‌تر و خیلی شکننده‌تر است. در هر یک از این دو نوع فولاد ، مقدار کربن را می‌توان در محدوده نسبتا وسیعی تنظیم کرد. همچنین ، می‌توان مقدار کل کربن را در قسمتهای مختلف یک قطعه فولاد تغییر داد و خواص آن را بهتر کرد. مثلا بلبرینگ از فولاد متوسط ساخته شده است تا سختی و استحکام داشته باشد و لیکن سطح آن را در بستری از کربن حرارت می‌دهند تا لایه نازکی از سمانتیت روی آن تشکیل گردد و بر سختی آن افزوده شود.


دسته بندی : فلزات آهنی

آهن

اطلاعات اولیه
آهن ، عنصر شیمیایی است که در جدول تناوبی با نشان Fe و عدد اتمی 26 وجود دارد. آهن فلزی است که در گروه 8 و دوره 4 جدول تناوبی قرار دارد.

تاریخچـــــه

اولین نشانه‌های استفاده از آهن به زمان سومریان و مصریان بر می‌گردد که تقریبا" 4000 سال قبل از میلاد با آهن کشف شده از شهاب سنگها اقلام کوچکی مثل سر نیزه و زیور آلات می‌ساختند. از 2000 تا 3000 سال قبل از میلاد ، تعداد فزاینده ای از اشیاء ساخته شده با آهن مذاب ( فقدان نیکل ، این محصولات را از آهن شهاب سنگی متمایز می‌کند ) در بین‌النهرین ، آسیای صغیر و مصر به چشم می‌خورد؛ اما ظاهرا" تنها در تشریفات از آهن استفاده می‌شد و آهن فلزی گرانبها حتی باارزش‌تر از طلا به‌حساب می‌آمد.

بر اساس تعدادی از منابع آهن ، بعنوان یک محصول جانبی از تصفیه مس تولید می‌شد - مثل آهن اسفنجی – و بوسیله
متالوژی آن زمان قابل تولید مجدد نبوده است. از 1600 تا 1200 قبل از میلاد در خاورمیانه بطور روز افزون از آین فلز استفاده می‌شد، اما جایگزین کابرد برنز در آن زمان نشد.

مهندسی مواد

تبر آهنی متعلق به عصر آهن سوئد در گاتلند سوئد یافت شده است. از قرن 10 تا 12 در خاورمیانه یک جابجایی سریع در تبدیل ابزار و سلاحهای برنزی به آهنی صورت گرفت. عامل مهم در این جابجائی ، آغاز ناگهانی تکنولوژیهای پیشرفته کار با آهن نبود، بلکه عامل اصلی ، مختل شدن تامین قلع بود. این دوره جابجایی که در زمانهای مختلف و در نقاط مختلفی از جهان رخ داد، دوره ای از تمدن به نام عصر آهن را بوجود آورد.

همزمان با جایگزینی آهن به جای برنز ، فرآیند کربوریزاسیون کشف شد که بوسیله آن به آهن موجود در آن زمان ، کربن اضافه می‌کردند. آهن را بصورت اسفنجی که مخلوطی از آهن و سرباره به همراه مقداری کربن یا کاربید است، بازیافت کردند. سپس سرباره آنرا با چکش‌کاری جدا نموده وم حتوی کربن را اکسیده می‌کردند تا بدین طریق آهن نرم تولید کنند.

مردم خاور میانه دریافتند که با حرارت دادن طولانی مدت آهن نرم در لایه ای از ذغال و آب دادن آن در آب یا روغن می‌توان محصولی بسیار محکم‌تر بدست آورد. محصول حاصله که دارای سطح فولادی است، از برنزی که قبلا" کاربرد داشت محکمتر و مقاوم‌تر بود. در چین نیز اولین بار از آهن شهاب سنگی استفاده شد و اولین شواهد باستان شناسی برای اقلام ساخته شده با آهن نرم در شمال شرقی نزدیک Xinjiang مربوط به قرن 8 قبل از میلاد بدست آمده است. این وسایل از آهن نرم و با همان روش خاورمیانه و اروپا ساخته شده بودند و گمان می‌رفت که برای مردم غیر چینی هم ارسال می‌کردند.

در سالهای آخر پادشاهی سلسله ژو ( حدود 550 قبل از میلاد) به سبب پیشرفت زیاد تکنولوژی کوره ، قابلیت تولید آهن جدیدی بوجود آمد. ساخت کوره‌های بلندی که توانایی حرارتهای بالای k 1300 را داشت، موجب تولید آهن خام یا چدن توسط چینِی‌ها شد. اگر سنگ معدن آهن را با کربن k 1470-1420 حرارت دهیم، مایع مذابی بدست می‌آید که آلیاژی با 5/96% آهن و 5/53% کربن است. این محصول محکم را می‌توان به شکلهای ریز و ظریفی در آورد. اما برای استفاده ، بسیار شکننده می‌باشند، مگر آنکه بیشتر کربن آنرا از بین ببرند.

از زمان سلسله ژو به بعد اکثر تولیدات آهن در چین به شکل چدن است. با این همه آهن بعنوان یک محصول عادی که برای صدها سال مورد استفاده کشاورزان قرار گرفته است، باقی ماند و تا زمان سلسله شین ( حدود 221 قبل از میلاد ) عظمت چین را واقعا" تحت تاثیر قرار نداد.

توسعه چدن در اروپا عقب افتاد، چون کوره‌های ذوب در اروپا فقط توانایی k 1000 را داشت. در بخش زیادی از قرون وسطی در اروپای غربی آهن را همچنان با روش تبدیل آهن اسفنجی به آهن نرم بدست می‌آوردند. تعدادی از قالب‌گیریهای آهن در اروپا بین سالهای 1150 و 1350 بعد از میلاد در دو منطقه در سوئد به نامهای Lapphyttan و Vinarhyttan انجام شد.

دانشمندان می‌پندارند شاید این روش بعد از این دو مکان تا مغولستان آن سوی روسیه ادامه یافته باشد، اما دلیل محکمی برای اثبات این فرضیه وجود ندارد. تا اواخر قرن نوزدهم در هر رویدادی یک بازار برای کالاهای چدنی بوجود آمد، مانند درخواست برای گلوله‌های توپ چدنی.

در آغاز برای ذوب آهن از زغال چوب هم بعنوان منبع حرارتی و هم عامل کاهنده استفاده می‌شد. در قرن 18 در انگلستان تامین کنندگان چوب کم شدند و از
زغال سنگ که یک سوخت فسیلی است، بعنوان منبع جانشین استفاده شد. این نوآوری بوسیلـــه Abraham Darby انرژی لازم برای انقلاب صنعتی را تامین نمود.

پیدایـــــــش

آهن یکی از رایج‌ترین عناصر زمین است که تقریبا" 5% پوسته زمین را تشکیل می‌دهد.
آهن از سنگ معدن هماتیت که عمدتا" Fe2O3 می‌باشد، استخراج می‌گردد. این فلز را بوسیله روش کاهش با کربن که عنصری واکنش‌‌پذیرتر است جدا می‌کنند. این عمل در
کوره بلند در دمای تقریبا" 2000 درجه سانتی‌گراد انجام می‌پذیرد.

در سال 2000 ، تقریبا" 1100 میلیون تن سنگ معدن آهن با رشد ارزش تجاری تقریبا" 25 میلیارد دلار آمریکا استخراج شد. درحالیکه استخراج سنگ معدن آهن در 48 کشور صورت می‌گیرد، چین ، برزیل ، استرالیا ، روسیه و هند با تولید 70% سنگ آهن جهان پنج کشور بزرگ تولید کنندگان آن به‌حساب می‌آیند. برای تولید تقریبا" 572 میلیون تن آهن خام 1100 میلیون تن سنگ آهن مورد نیاز است.

خصوصیات قابل توجه

جرم یک اتم معمولی آهن 56 برابر جرم یک اتم معمولی هیدروژن می‌باشد. عقیده بر این است که آهن ، دهمین عنصر فراوان در جهان است. Fe مخفف واژه لاتین ferrum برای آهن می‌باشد. این فلز ، از سنگ معدن آهن استخراج می‌شود و به‌ندرت به حالت آزاد (عنصری) یافت می‌گردد.

برای تهیه آهن عنصری ، باید ناخالصیهای آن با روش
کاهش شیمیایی از بین برود. آهن برای تولید فولاد بکار می‌رود که عنصر نیست، بلکه یک آلیاژ و مخلوطی است از فلزات متفاوت ( و تعدادی غیر فلز بخصوص کربن ). هسته اتمهای آهن دارای بیشترین نیروی همگیر در هر نوکلئون هستند بنابراین آهن با روش همجوشی ، سنگین‌ترین و با روش شکافت اتمی ، سبکترین عنصری است که بصورت گرمازایی تولید می‌شود.

وقتی یک ستاره که دارای جرم کافی می‌باشد چنین کاری انجام دهد، دیگر قادر به تولید انرژی در هسته‌اش نبوده و یک ابر اختر پدید می‌آید. آهن رایج‌ترین فلز در جهان به حساب می‌آید. الگوهای جهان شناختی با یک جهان باز پیش‌بینی زمانی را می‌کند که در نتیجه واکنشهای همجوشی و
شکافت هسته ، همه چیز به آهن تبدیل خواهد شد!

کاربردهــــــــــا

کاربرد آهن از تمامی فلزات بیشتر است و 95 درصد فلزات تولید شده در سراسر جهان را تشکیل می‌دهد. قیمت ارزان و مقاومت بالای ترکیب آن استفاده از آنرا بخصوص در اتومبیلها ، بدنه کشتی‌های بزرگ و ساختمانها اجتناب ناپذیر می‌کند. فولاد معروف‌ترین آلیاژ آهن است و تعدادی از گونه‌های آهن به شرح زیر می‌باشد:


  • آهن خام که دارای 5%-4% کربن و مقادیر متفاوتی ناخالصی از قبیل گوگرد ، سیلیکون و فسفر است و اهمیت آن فقط به این علت است که در مرحله میانی مسیر سنگ آهن تا چدن و فولاد قرار دارد.

  • چدن ، شامل 5/3%-2% کربن و مقدار کمی منگنز می‌باشد. ناخالصی‌های موجود در آهن خام مثل گوگرد و فسفر که خصوصیات آنرا تحت تاثیر منفی قرار می‌دهد، در چدن تا حد قابل قبولی کاهش می‌یابند. نقطه ذوب چدن بین k 1470-1420 می‌باشد که از هر دو ترکیب اصلی آن کمتر است و آنرا به اولین محصول ذوب شده پس از گرم شدن همزمان کربن و آهن تبدیل می‌کند. چدن بسیار محکم ، سخت و شکننده می‌باشد. چدن مورد استفاده حتی چدن گرمای سفید موجب شکستن اجسام می‌شود.

  • فولاد کربن شامل 5/1% - 5/0% کربن و مقادیر کم منگنز ، گوگرد ، فسفر و سیلیکون است.

  • آهن ورزیده ( آهن نرم) دارای کمتر از 5/0% کربن می‌باشد و محصولی محکم و چکش‌خوار است، اما به اندازه آهن خام گدازپذیر نیست. حاوی مقادیر بسیار کمی کربن است ( چند دهم درصد). اگر یک لبه آن تیز شود، به‌سرعت تیزی خود را از دست می‌دهد.

  • فولادهای آلیاژ حاوی مقادیر متفاوتی کربن بعلاوه فلزات دیگر مانند کروم ، وانادیم ، مولیبدن ، نیکل ، تنگستن و ... می‌باشد.

  • اکسیدهای آهن برای ساخت ذخیره مغناطیسی در کامپیوتر مورد استفاده قرار می‌گیرند. آنها اغلب با ترکیبات دیگری مخلوط شده و خصوصیات مغناطیسی خود را بصورت محلول هم حفظ می‌کنند.

ترکیبات

معمولترین حالات اکسیداسیون آهن عبارتند از:


  • حالت فروس 2+Fe
  • حالت فریک 3+Fe
  • حالت فریل 4+Fe که با تعدادی آنزیم ( مثلا" پیروکسیدازها ) پایدار شده است.
  • آهن ( VI) هم معروف است (اگرچه کمیاب می‌باشد). درصورتیکه به شکل فرات پتاسیم باشد، ( K2FeO ) یک اکسید کننده انتخابی برای الکلهای نوع اول می‌باشد. این ماده جامد فقط در شرائط خلاء و ارغوانی تیره پایدار است، هم به صورت محلول سوزآور و هم بصورت یک ماده جامد.
  • کاربید آهن Fe3C به نام سمنتیت معروف است.

بیولـــــــوژی

آهن ، اتم اصلی مولکول هِم ( بخشی از گلبول قرمز) و بنابراین جزء ضروری تمامی هموپروتئین‌ها محسوب می‌شود. به همین علت ، وجود این عنصر در حیوانات حیاتی می‌باشد. همچنین آهن غیر آلی در زنجیره‌های آهن – گوگرد بسیاری از آنزیمها یافت می‌شود. باکتریها اغلب از آهن استفاده می‌کنند. وقتی بدن در حال مبارزه با یک عفونت باکتریایی است، برای عدم دستیابی باکتری به آهن ، این عنصر را پنهان می‌کند.

ایزوتوپها

آهن بطور طبیعی دارای چهار ایزوتوپ پایدار Fe-54 , Fe56 , Fe-57 , Fe-58 می‌باشد. فراوانی نسبی ایزوتوپهای آهن در طبیعت تقریبا" Fe-54 8/5% ، Fe-56 7/91%، Fe-57 2/2% و Fe-58 3/0% است.Fe-60 که نوکلید پرتوزای غیر فعال است، دارای نیمه عمر 5,1 (Myr) می‌باشد. بیشتر تلاش گذشته برای اندازه گیری ترکیبات ایزوتوپی آهن به‌علت فرآیندهایی که توام با نوکلئوسنتز ( مانند مطالعات شهاب سنگها ) و شکل‌گیری کانی‌ها هستند، حول محور تعیین انواع مختلف Fe-60 صورت گرفته است.

در وهله‌های مختلف ، شهاب سنگهای Semarkona و Chervony Kut می‌توان بین تمرکز
Ni-nickel|60 ( محصول اخترچه Fe-60 ) و فراوانی ایزوتوپهای پایدار آهن ارتباطی یافت که دلیلی برای وجود آهن 60 در زمان شکل‌گیری منظومه شمسی می‌باشد. احتمالا" انرژی آزاد شده توسط فروپاشی آهن 60 به همراه انرژی رها شده بر اثر فروپاشی نوکلئید پرتوزای Al-26 ، در ذوب مجدد و تفکیک اخترچه‌های بعد از شکل‌گیری آنها 4,6 میلیارد سال پیش تاثیر داشته است. فراوانی Ni-60 موجود در مواد فرازمینی نیز ممکن است آگاهی بیشتری در مورد منشاء منظومه شمسی و تاریخ ابتدایی آن ارائه نماید.

در بین ایزوتوپهای پایدار فقط آهن 57 دارای اسپین اتمی است،(2/1-). به همین خاطر آهن 57 در شیمی و بیوشیمی بعنوان یک ایزوتوپ اسپینی دارای کاربرد است.

هشدارهـــــــــا

مصرف بیش از حد آهن خوراکی ایجاد مسمومیت می‌کند، چون مقدار زیاد آهن فروس با پروکسیدهای بدن واکنش کرده ، تولید بنیانهای آزاد می‌کند. وقتی مقدار آهن در بدن طبیعی است، مکانیسمهای ضد اکسیداسیون خود بدن قادر به کنترل این فرآیند می‌باشد. اگر مقدار آهن بیش از نرمال باشد، مقادیر غیرقابل کنترل بنیانهای آزاد بوجود می‌آید.

مقدار کشنده آهن برای یک کودک 2 ساله تقریبا" 3 گرم بوده و یک گرم آن مسمومیت جدی در پی خواهد داشت. گزارشهایی مبنی بر مسمومیت کودکان در اثر مصرف 10 تا 50 عدد قرص سولفات آهن در کوتاه مدت وجود دارد.مصرف بیش از حد آهن بر اثر خوردن غیر عمدی داروها عامل جدی مرگ و میر در کودکان است. افزایش غیرقابل کنترل آهن در بدن ، موجب بروز بیماری به نام hemochromatosis می‌گردد. آهن اضافی در کبد جمع شده ، موجب بیماری آهن زدگی siderosis و آسیبهای عضوی می‌شود. به همین دلیل افرادیکه کمبود آهن ندارند، نباید مکملهای آهن مصرف کنند.


دسته بندی : فلزات آهنی

طلا

اطلاعات طلا ، عنصر شیمیایی است که در جدول تناوبی با نشان Au ( لاتین aurum ) و عدد اتمی 79 وجود دارد. طلا فلزی است نرم ، براق ، زرد رنگ ، چکش‌خوار ، قابل انعطاف ( سه ظرفینتی و یک ظرفیتی ) و فلز واسطه که با بیشتر عناصر شیمیایی واکنش ندارد و تنها بوسیله کلر و تیزاب سلطانی ( آمیزه ای از اسید نیتریک و اسید هیدروکلریک ) مورد حمله قرار می‌گیرد.

این فلز عمدتا" به شکل آزاد و بصورت تکه‌هایی در سنگها و رسوبهای آبرفتی وجود دارد و یکی از فلزات ضرب سکه می‌باشد. طلا در بسیاری از کشورها بعنوان معیار ارزش پول بکار می‌رود. همچنین در جواهرات ، دندانپزشکی و الکترونیک مورد استفاده قرار می‌گیرد.

تاریخچه

طلا ( از واژه سانسکریت Jval ؛ آنگلوساکسون gold ؛ لاتین aurum که همگی به معن طلا هستند ) را از دوران باستان شناخته و به ارزش بالای آن پی بردند. هیروگلیف مصری از 2600 قبل از میلاد این فلز را توصیف کرده و در کتاب عهد عتیق بارها به طلا اشاره شده است. زمان زیادی است که طلا یکی از گران‌قیمت‌ترین فلزات به حساب آمده و قیمت آن در تاریخ ، معیار بسیاری از پولهای رایج می‌باشد ( تحت عنوان پایه طلا شناخته می‌شود ).

از طلا بعنوان نمادی برای پاکی ، ارزش ، سلطنت و مخصوصا" نقشهایی که ترکیبی از این ویژگیها است استفاده می‌شود. نخستین هدف کیمیاگران ، تولید طلا از سایر مواد مانند
سرب بود، اگرچه کیمیاگران هرگز موفق به این کار نشدند. گیمیاگران نشانه طلا را دایره و نقطه‌ای در وسط می‌دانند و همچنین نشان ستاره شناسی هم هست.

در بسیاری از مسابقات به نفر اول مدال طلا ، به نفر دوم نقره و به نفر سوم برنز جایزه می‌دهند. بیشترین مقدار طلا در جهان در بانک مرکزی دولت فدرال آمریکا وجود دارد. در طی قرن نوزدهم هر جا ذخایر بزرگ طلا کشف می‌شد، هجوم طلا رخ می‌داد. از جمله هجوم طلای کالیفرنیا ، کلرادو ، اتاگو ، استرالیا ، Black Hills و کلوندایک.

پیدایش

طلا بخاطر سکون شیمیایی نسبی که دارد، بیشتر بصورت فلز محلی و ندرتا" به شکل تکه‌های بزرگ یافت می‌شود، اما معمولا" بصورت ذرات بسیار ریزی در برخی مواد معدنی ، رگه‌های کوارتز ، سنگ لوح ، صخره های دگردیسی و رسوبات آبرفتی که از این منابع سرچشمه گرفته‌اند، دیده می‌شود. طلا بطور گسترده ای پراکنده شده و بیشترهمراه کوارتز یا پیریت است و در کانی‌های پتزیت ، کالاوریت و سیلوانیت با تلوریم ترکیب شده است.

این عنصر با روشهای بهره برداری از رسوبات دارای طلا از رسوبات جدا می‌شود. آفریقای جنوبی منبع تقریبا" 2,3 ذخائر طلای جهان است ( منابع موجود در داکوتای جنوبی و نوادا دو سوم طلای مصرفی آمریکا را تامین می‌کنند ). طلا را با استفاده از
سیانور ، آمالگام و گداختن از کانی‌ها خارج می‌کنند.

پالایش این فلز اغلب بوسیله
الکترولیز تحقق می‌یابد. این فلز در آب دریا و بر حسب مکان نمونه برداری بین 0،1 تا 2 میلی‌گرم در تن یافت می‌شوند، لذا تا سال 1383 هیچ روش مفیدی برای بازیافت طلا از آب دریا ابداع نشده است. اگرچه طلا در صنعت و هنر بسیار مهم است، این عنصر وضعیت منحصر به فردی نسبت به تمامی کالاها دارد و آن ، حفظ ارزش خود در دراز مدت می‌باشد.

برآورد شده ست که با کل طلای پالایش شده جهان می‌توان یک مکعب یکپارچه هر ضلع 20 متر (60 فوت) درست کرد.

خصوصیات قابل توجه

طلا عنصر فلزی است که کلا" به رنگ زرد دیده می‌شود، اما اگر به‌دقـت جدا شود، می‌تواند سیاه ، قرمز سیر یا ارغوانی باشد. شاید بتوان گفت این فلز ، زیباترین عنصر و چکش‌خوارترین و قابل انعطاف‌ترین فلز شناخته شده است. در واقع یک اونس طلا را می‌توان با چکش کاری به یک ورقه 300 فوت مربع تبدیل نمود. طلا که فلزی نرم می‌باشد، برای استحکام بیشتر اغلب با فلزات دیگر آلیاژ می‌شود.

طلا یک رسانای خوب حرارتی و الکتریکی است که تحت تاثیر هوا و سایر معرفها قرار نمی‌گیرد. این فلز تا حد زیادی در برابر حرارت ، رطوبت و بیشتر عوامل فرساینده مقاوم است و بنابراین استفاده از آن در سکه و جواهرات بسیار مناسب است. رنگ طلای جامد و
محلولهای کلوئیدی تیره رنگی که ( اغلب ارغوانی ) می‌توان از آن تهیه کرد، به این علت است که فرکانس پلاسمون این عنصر در دامنه مرئی وجود دارد که موجب انعکاس نورهای زرد و قرمز و جذب نور آبی می‌شود.

طلای بومی معمولا"دارای 8 تا 10 درصد
نقره می‌باشد، اما اغلب این مقدار بیشتر است. هرچه مقدار نقره بیشتر شود، رنگ طلا سفیدتر و جرم مخصوص آن کمتر می‌شود. آلیاژ آن با مس به رنگ قرمز ، با آهن به رنگ سبز و با آلومینیوم به رنگ ارغوانی می‌باشد. جواهراتی که در شرق آمریکا با ترکیباتی از طلای رنگین به توریستها فروخته می‌شود، به نام طلای Black Hills داد و ستد می‌شود.

حالات اکسیداسیون معمولی طلا شامل 1+و3+ است.

مواد

کاربردها

  • طلای خالص برای استفاده‌های عادی بسیار نرم هستند، لذا برای استحکام آن ، با نقره و مس آلیاژ می‌سازند.

  • در بسیاری از کشورها از طلا و بسیاری از آلیاژهای آن در جواهرات و ضرب سکه و نیز بعنوان شاخصی برای مبادلات پولی استفاده می‌شود.

  • به‌علت هدایت الکتریکی خوب و مقاومت آن در برابر فرسایش و سایر ویژگیهای فیزیکی و شیمیایی این عنصر، از اواخر قرن بیستم طلا بعنوان فلز صنعتی مهمی به حساب آمده است.

  • طلا عملکرد مهمی در رایانه ، تجهیزات ارتباطی ، موتور هواپیمای جت و فضاپیماها و بسیاری محصولات دیگر دارد.

  • هدایت الکتریکی خوب طلا و مقاومت آن در برابر اکسیداسیون موجب کاربرد وسیع آن برای آبکاری سطح اتصال دهنده‌های الکتریکی شده است تا اتصالی خوب با مقاومت کم تضمین شود.

  • طلا همانند نقره می‌تواند با جیوه ، ملغمه محکمی را تشکیل دهد که گاهی از آن برای پر کردن دندان استفاده می‌شود.

  • اخیرا" طلای کلوئیدی ( ذرات یک بیلیونیم طلا ) که محلولی کاملا رنگی می‌باشد، برای مصارف بیولوژیکی و پزشکی در آزمایشگاههای زیادی مورد بررسی قرار گرفته است. همچنین برای رنگ طلائی روی سرامیکها قبل از پختن در کوره استفاده می‌شود.

  • از اسید Chlorauric در عکاسی برای پررنگ کردن تصویر نقره‌ای استفاده می‌شود.

  • Disodium aurothiomalate برای درمان روماتیسم مفصلی بکار می‌رود؛ (درون عضله وارد می‌شود).

  • از ایزوتوپ Au-198 ( با نیمه عمر 2,7 روز ) برای درمان برخی سرطانها و بیماریهای دیگر استفاده می‌شود.

  • طلا بعنوان یک ماده بیولوژیکی که امکان پوشش بوجود می‌آورد، کاربرد دارد و باید آنرا بوسیله میکروسکوپ الکترونی ( scanning electron microscope ) مشاهده نمود.

  • طلا اغلب نماد بهترین و والاترین دستاوردها می‌باشد. یک مدال طلا مانند روبان آبی ، بهترین پاداش در بازیهای المپیک و بسیاری از رقابتهای دیگر است.

  • چون طلا منعکس کننده خوبی برای هر دو نور مادون قرمز و نور ساکن است، بعنوان لایه محافظ سطح بسیاری از ماهواره‌ها مورد استفاده قرار می‌گیرد.


 

مواد


 

ارزش

طلا مانند فلزات پُر ارزش دیگر با سیستم توزین تروی سنجیده می‌شود و در صورت آلیاژ با سایر فلزات از اصطلاح carat برای مشخص کردن مقدار طلای موجود با عیار 24 ( که طلای خالص است ) استفاده می‌شود. ( در ایران بیشتر از مثقال برای معاملات بازار طلا استفاده می‌شود و برای آلیاژهای طلا از میزان عیار اسفاده می‌شود که عیار 24 طلای خالص می‌باشد).

در طول تاریخ از طلا برای پشتیبانی پول و در سیستمی تحت عنوان پایه طلا استفاده می‌شد که در این سیستم ، یک واحد از پول رایج معادل مقدار معینی طلا بود. مدت زیادی ارزش طلا توسط آمریکا برای هر اونس تروی 20,62 دلار تعیین شد، اما در سال 1934 ارزش طلا 35،00 دلار برای هر اونس تروی تثبیت شد.

به سبب بحران طلا در 17 مارس 1968 طرح نرخ‌گذاری دوگانه ایجاد شد که طبق آن برای تثبیت ارزش بین‌المللی ، طلا همچنان به قیمت سابق 35،00 دلار در هر اونس تروی باقی ماند، اما قیمت آن در بازار خصوصی اجازه نوسان یافت؛ این سیستم نرخ‌گذاری دوگانه در سال 1975 هنگامی‌که نرخ طلا اجازه نوسان یافت، متوقف شد. از سال 1968 نرخ طلا در بازار آزاد نوسان شدیدی یافت، بطوری‌که در ژانویه 1980 به 620 دلار در هر اونس تروی رسید، اما تا ژانویه 1990 قیمت آن به 410 دلار در هر اونس تروی کاهش یافت.

گاهی اوقات ، مالکیت طلا به خاطر نقشی که بعنوان پشتوانه پول دارد، محدود و یا ممنوع می‌شود. در آمریکا مالکیت خصوصی طلا جز بصورت جواهر و سکه بین سالهای 1933 و 1975 ممنوع شده بود. چون طلا مدت زمان بسیار طولانی ارزش خود را حفظ کرده است، بعنوان یک سرمایه‌گذاری مشهود اغلب به‌صورت بخشی از یک سهام نگهداری می‌شود.

چون طلا ارزش خود را حتی هنگامیکه پول بی‌پشتوانه بی‌ارزش می‌شود حفظ می‌کند، بنابراین مخصوصا" در زمان ناتوانی یا تورم دید مورد نیاز است.

قراردادهای آینده برمبنای داد و ستد جاری طلا در COMEX ( محل خرید و فروش کالا ) است که شعبه ای از بازار بورس نیویورک ( New York Mercantile Exchange ) می‌باشد و پیش‌بینی قیمت طلا و سایر کالاها در آینده در این مکان انجام می‌گیرد.

ترکیبات

  • کلرید دارای طلا (AuCl3) و اسید کلروئیک ( HAuCl4 ) رایج‌ترین ترکیبات طلا هستند. اگرچه طلا فلز بی‌اثر است، اما قادر است ترکیبات فراوانی بسازد.
  • در تیزاب سلطانی حل شده تولید یون -AuCl4 منفی می کند.
  • هالیدهای طلا ( F , Cl , Br , I )
  • کالکوژنیدهای طلا ( O , S , Se , Te )
  • ترکیبات خوشه‌ای طلا


 

مواد


 

ایزوتوپها

تنها یک ایزوتوپ پایدار و 18 رادیوایزوتوپ که فراوان‌ترین آنها Au-195 با نیمه عمر 186 روز است، برای طلا وجود دارد.

هشدارها

بدن انسان این فلز را جذب نمی‌کند و طبیعتا" ترکیبات طلا خیلی سمی نیستند. با این همه درمورد50% بیماران ورم مفاصل که با داروهای حاوی طلا درمان شده‌اند، آسیب کبد و کلیه گزارش شده است


دسته بندی : فلزات غیرآهنی

سرب

اطلاعات اولیه

سرب ، عنصر شیمیایی است که در جدول تناوبی با نشان Pb و عدد اتمی 82 وجود دارد. سرب ، عنصری سنگین ، سمی و چکش‌خوار است که دارای رنگ خاکستری کدری می‌باشد. هنگامیکه تازه تراشیده شده ، سفید مایل به آبی است، اما در معرض هوا به رنگ خاکستری تیره تبدیل می‌شود. از سرب در سازه‌های ساختمانی ، خازنهای اسید سرب ، ساچمه و گلوله استفاده شده و نیز بخشی از آلیاژهای لحیم ، پیوتر و آلیاژهای گدازپذیر می‌باشد. سرب سنگین‌ترین عنصر پایدار است.

تاریخچـــــــه

به‌علت فراوانی سرب ( هنوز هم اینگونه است ) ، تهیه آسان ، کار کردن آسان با آن ، انعطاف‌پذیری و چکش‌خواری بالا و پالایش راحت ، حداقل از 7000 سال پیش مورد استفاده بشر می‌باشد. در کتاب خروج ( بخشی از انجیل ) به این عنصر اشاره شده است. کیمیاگران می‌پنداشتند سرب قدیمی‌ترین فلز بوده و به سیاره زحل مربوط می‌شود. لوله‌های سربی که نشانه‌های امپراتوری روم را حمل می‌کردند، هنوز هم بکار می‌روند. نشان Pb برای سرب خلاصه نام لاتین آن plumbum است. در اواسط دهه 80 تغییر مهمی در الگوهای پایان استفاده از سرب بوجود آمده بود. بیشتر این تغییر ناشی از پیروی مصرف کنندگان سرب آمریکا از قوانین زیست محیطی بود که بطرز قابل ملاحظه ای استفاده از سرب را در محصولات بجز باطری از جمله گازوئیل ، رنگ ، اتصالات و سیستمهای آبی کاهش داده یا حتی حذف کرد.

خصوصیات قابل توجه

سرب فلزی است براق ، انعطاف پذیر ، بسیار نرم ، شدیدا" چکش خوار و به رنگ سفید مایل به آبی که از خاصیت هدایت الکتریکی پایینی برخوردار می‌باشد. این فلز حقیقی به‌شدت در برابر پوسیدگی مقاومت می‌کند و به همین علت از آن برای نگهداری مایعات فرسایشگر ( مثل اسید سولفوریک ) استفاده می‌شود. با افزودن مقادیر خیلی کمی آنتیموان یا فلزات دیگر به سرب می‌توان آنرا سخت نمود.

کاربردها

  • کاربردهای اولیه سرب عبارت بودند از: سازه های ساختمانی ، رنگدانه‌های مورد استفاده در لعاب سرامیک و لوله‌های انتقال آب. کاخها و کلیساهای بزرگ اروپا در وسایل تزئینی ، سقفها ، لوله‌ها و پنجره‌هایشان دارای مقادیر قابل توجهی سرب هستند. این فلز ( در حالت عنصری ) پس از آهن ، آلومینیوم ، مس و روی بیشترین کاربرد را دارد.

  • در باطری‌های اسید سرب ، در اجزای الکترونیکی ، روکش کابل ، مهمات ، در شیشه CTR ها ، سرامیک ، شیشه‌های سُرب‌دار ، لوله‌های سربی ( اگرچه استفاده از اتصالات سربی در لوله های آب آشامیدنی در دهه 90 در آمریکا قانونی شد ، امروزه کاربرد آنچنانی ندارند ) ، در رنگها ( از سال 1978 در آمریکا و به‌تدریج از دهه 60 تا دهه 80 در انگلستان ممنوع شد، اگرچه رنگ سطوح قدیمی می‌توانست تا 50% وزن از سرب باشد ) ، آلیاژها ، پیوتر ، اتصالات و مواد پر کننده دندان.

    همچنین در بامها بعنوان درزگیر برای محافظت اتصالات در برابر باران مورد استفاده قرار می‌گیرد. در
    گازوئیل ( بنزین) بعنوان تترا اتیل و تترا متیل سرب برای کاهش صدای موتور کاربرد دارد. ( pre-detonation ، pre-ignition و pinking هم نامیده می‌شود ). فروش بنزین سربدار در آمریکا از سال 1986 و در اتحادیه اروپا از سال 1999 ممنوع شد.

جداسازی

سرب محلی در طبیعت یافت می‌شود، اما کمیاب است. امروزه معمولا" سرب در کانی‌هایی همراه با روی ، نقره و ( بیشتر) مس یافت می‌شود و به همراه این مواد جدا می‌گردد. ماده معدنی اصلی سرب گالن (PbS) است که حاوی 86,6% سرب می‌باشد. سایرکانیهای مختلف و معمول آن سروسیت ( PbCO3 ) و انگلسیت ( PbSO4 ) می‌باشند. اما بیش از نیمی از سربی که امروزه مورد استفاده قرار می‌گیرد، بازیافتی است.

سنگ معدن بوسیله مته یا انفجار جدا شده ، سپس آنرا خرد کرده و روی زمین قرار می‌دهند. بعد از آن ، سنگ معدن تحت تاثیر فرآیندی قرار می‌گیرد که در قرن نوزدهم در Broken Hill استرالیا بوجود آمد. یک فرآیند شناور سازی ، سرب و دیگر مواد معدنی را از پس‌مانده‌های سنگ جدا می‌کند تا با عبور سنگ معدن ، آب و
مواد شیمیایی خاص از تعدادی مخزن که درون آنها دوغاب همیشه مخلوط می‌شود، عصاره ای بوجود آید.

درون این مخزنها هوا جریان یافته و سولفید سرب به حبابها می‌چسبد و بصورت کف بالا آمده که می‌توان آنرا جدا نمود. این کف ( که تقریبا" دارای 50% سرب است ) خشک شده ، سپس قبل از پالایش به منظور تولید سرب 97% سینتر می‌شوند. بعد ازآن سرب را طی مراحل مختلف سرد کرده تا ناخالصیهای سبکتر بالا آمده و آنها را جدا می‌کنند. سرب مذاب با گداختن بیشتر بوسیله عبور هوا از روی آن وتشکیل لایه ای از تفاله فلز که حاوی تمامی ناخالصیهای باقی مانده می‌باشد، تصفیه شده و سرب خالص 99,9% بدست می‌آید.

ایزوتوپهــــــــــــا

سرب بطور طبیعی دارای چهار ایزوتوپ پایدار است : Pb-204(1.4%)-Pb-206(24.1%)-Pb-207(22.1%)-Pb-208(52.4%). سرب 206 ، 207 و 208 همگی پرتوزا بوده ، محصولات پایانی زنجیره فروپاشی پیچیده ای هستند که به ترتیب در U-238 ، U-235 و Th-232 رخ می‌دهند.

هشدارهــــــــــا

سرب فلز سمی است که به پیوندهای عصبی آسیب رسانده ( بخصوص در بچه‌ها ) و موجب بیماریهای خونی و مغزی می‌شود. تماس طولانی با این فلز یا نمکهای آن ( مخصوصا" نمکهای محلول یا اکسید غلیظ آن PbO2 ) می‌تواند باعث بیماریهای کلیه و دردهای شکمی شود. به اعتقاد بعضی افراد استفاده تاریخی از سرب توسط امپراطوری روم برای لوله‌های آب ( و نمک آن ، استات سرب که بعنوان شیرین کننده شراب و به نام شکر سرب هم معروف است ) عامل دیوانگی بسیاری از امپراطوران بود. نگرانی درباره نقش سرب در عقب‌ماندگی ذهنی کودکان موجب کاهش استفاده از آن در سطح جهان گردید.

فروش رنگهای حاوی سرب در کشورهای صنعتی متوقف شده ، گرچه احتمالا" بسیاری از خانه‌های قدیمی هنوز دارای مواد سربی در رنگهایشان هستند. کلا" پیشنهاد می‌شود رنگهای قدیمی را با سمباده ازبین نبرند، چون این کار باعث ایجاد غباری قابل استنشاق می‌گردد. نمکهای سرب که در لعاب ظروف سفالی بکار می‌رود، گاهی اوقات ایجاد مسمومیت کرده‌اند، چون هنگامیکه در آنها اسید نوشیده می‌شود، مانند آبمیوه ها ، یونهای سرب از لعاب ظرف جدا می‌شوند. گفته می‌شود استفاده از سرب برای فشردن سیب جهت تهیه آب سیب ، عامل بیماری Devon colic می‌باشد.

گمان می‌رود سرب پیامدهای ناگواری برای دختران و خانمهای جوان داشته باشد به همین علت بسیاری از دانشگاهها در تجزیه و تحلیلهای دختران ، سرب را در اختیار آنها نمی‌گذارند. سرب در واقع برای ساخت مدادهای اولیه مورد استفاده قرار می‌گرفت، اگرچه در چند دهه اخیر مغز مدادها از
گرافیت که شکل طبیعی کربن می‌باشد، ساخته شده است.

مواد


 

ریشه‌های کلمــــــه

واژه لاتین plumbum باعث شکل گیری اصطلاحات زیادی در زبان انگلیسی شده است:


  • Plumbing ( لوله کشی) یا سیستمی از لوله کشی. چون در گذشته لوله‌ها از سرب ساخته می‌شدند، این واژه ریشه در آن دوران دارد.
  • Plumb bob یا plummet ( شاغول کوچک) جسم فلزی باریک و نوک تیز که از وزن آن برای کشیده نگه داشتن ریسمان بصورت افقی استفاده می‌شود، اشاره به این حقیقت دارد که این شاغولها در آغاز از سرب ساخته می‌شدند.
  • Plumb wall نام آن به این علت است که از شاغول ( Plumb bob ) برای یافتن خط عمود استفاده می‌شود.
  • Plumbing the depths ( ژرف یابی ) از کاربرد وزنه سربی برای انداختن ژرف‌یاب تا انتهای آبها اقتباس شده است ( یا در انتهای قلاب ماهیگیری اگر آب واقعا" عمق داشته باشد! )
  • Plumb crazy احتمالا" چون مسمومیت سرب می‌تواند منجر به دیوانگی شود، این واژه بدست آمده یا بنابر OED ، از یک مفهوم آمریکایی plum ( مشتق از واژه plumb ) به معنی " کاملا" برگرفته شده است.
  • Plumbism (مسمومیت سربی) اصطلاح پزشکی به معنی مسمومیت سربی می‌باشد.
  • Aplomb ( اعتماد به نفس ) از واژه فرانسوی plomb برگرفته شده که به معنی دقیقا" عمود و بنابراین مطمئن و خونسرد می‌باشد.

دسته بندی : فلزات غیرآهنی

اثر عناصر آلياژی بر ميکروساختار و استحکام چدن خاکستری

خلاصه:
آزمایشات ریخته گری برای توليد چدنهای خاکستری باترکيباتی در محدوده(درصد وزنی):

 Fe–3.2C–wCu–xMo–yMn–zSi که w = 0.78–1.79, x = 0.11–1.17, y = 0.68–2.34 و

z = 1.41–2.32 انجام شده است.
اين عناصر کليدی بطور سيستماتيک در طی ريخته گری ماسه ای بصورت ميلگردهای با قطر 30-mm برای ارزيابی تاثيرشان بر توسعه ميکروساختار و خواص مکانيکی،تغييريافتند.معلوم شد که محدوده ميکروساختارها از پرليت کامل تا ترکيبی از آستنيت باقيمانده و فريت بينيتی به اصطلاح آسفريت (ausferrite) توليد شدند و يک همبستگی خطی مستدل بين کسر حجمی شکستن و استحکام آسفريت مشاهده شد. ترکيب بهينه خواص مکانيکی در يک آلياژ با ترکيب تقريبی Fe–3.2C–1.0Cu–0.7Mo–0.55Mn–2.0Si بدست آمد که 100% آسفريت بدون کاربيدهای آلياژی توليد شد. اين آلياژ يک ميکروساختار و خواص مکانيکی قابل مقايسه با چدن خاکستری آستمپر شده بدون مشکلات زياد همراه با آستمپرينگ داشت.

کلمات کليدی: چدن خاکستری، ميکروساختار، ریخته گری و آسفريت



1- مقدمه
چدن خاکستری يک گروه وسيع از آلياژهای ريختگی آهنی است که معمولا" بوسيله يک ميکروساختار از گرافيت ورقه ای (flake graphite) در يک زمينه آهنی مشخص می شود. آن اساسا" يک آلياژ Fe–C–Si شامل مقادير کوچکی از عناصر آلياژی ديگر و بيشترين آلياژ ريختگی مورداستفاده و با توليد جهانی ساليانه 6 ميليون تن است که چندين برابر ديگر فلزات ريختگی است[1].
ميکروساختار چدن خاکستری معمولا" شامل گرافيت ورقه ای و يک زمينه پرليت و يا فريت است که خواص مکانيکی، قابليت ماشينکاری و غيره به آن بستگی دارد. چدنهای خاکستری معمولی، زمينه پرليتی و استحکام کششی در محدوده 140 تا 400 Mpa دارند. وسيله اصلی برای بهبود خواص مکانيکی، کاهش کربن معادل است که درصد گرافيت را کاهش و پرليت را افزايش می دهد. جدول(1) انواع تجاری چدن خاکستری و خواص مکانيکی مربوط به آنها را نشان می دهد.
برای بهبود خواص چدن خاکستری، تحقيق بر روی گسترش ميکروساختار آسفريت بيش از 40 سال انجام گرفته است[6-2]. يک بهبود مهم ويژه در خواص، نتيجه ای از گسترش چدن خاکستری آستمپر شده است[7-3]. چدنهای خاکستری آستمپر شده به مهندس چاره هایی با ترکيبات فرايندی/موادی معمولی پيشنهاد می دهد[7]. از طريق آستمپرينگ، زمينه فريتی يا پرليتی، چدن خاکستری به يک ساختار سوزنی شامل 70 تا 80% فريت بينيتی بدون کاربيد و آستنيت باقيمانده 20 تا 30% تغيير می يابد. چنين ساختاری به اصطلاح آسفريت است[6]. نشان داده شده است که چنين ساختار زمينه ای، يک چدن خاکستری با يک ترکيب منحصر بفرد از استحکام، مقاومت سايشی، جذب صدا و يا لرزش و تافنس شکست بالا را توليد می کند[6و7].
يک عمليات حرارتی معمولی آستمپرينگ چدن خاکستری، آستنيته کردن در دمای 840–900º C برای چند ساعت بر اساس ترکيب و ضخامت ريختگی و آستمپر کردن در 230–425º C است[6و7].
در حالی که اين برنامه زمانی عمليات حرارتی تولید چدن خاکستری با يک محدوده عالی از خواص ، به انرژی قابل ملاحظه و فضای توليد نياز دارد و ممکن است باعث آلودگی محيطی بعلاوه اکسيداسيون و ترک در اجزا شود. اين مشکلات ، توليد گسترده چدن خاکستری آستمپر شده را محدود کرده اند، بنابراين تحقيق بر روی گسترش چدن خاکستری آسفريتی را بوسيله ريخته گری مستقيم وادار می کنند[5]. کار حاضر قصد دارد نشان دهد که چگونه تغييرات سيستماتيک در اضافه کردن آلياژی به يک چدن خاکستری معمولی در طی ريخته گری می تواند يک آلياژ با ميکروساختار فريت بينيتی-آستنيتی (آسفريتی) با خواص مکانيکی قابل مقايسه با چدن خاکستری آستمپر شده را توليد کند.

جدول(1): ترکيب و خواص مکانيکی کلاسهای مختلف چدن خاکستری
 

    Class Total carbon (wt.%) Total silicon (wt.%) Tensile strength (MPa) Transverse load on test bar (kg f) Hardness (HB)
     20   3.40–3.60    2.30–2.50           152            839 56
     25          -            -           179            987 174
     30   3.10–3.30    2.10–2.30           214           1145 210
     35          -            -           252           1293 212


2- تجربی
2-1- مواد و روش ريخته گری
هدف اصلی از کار حاضر تعيين تاثير عناصر آلياژی کليدی بر توسعه ميکروساختاری چدن خاکستری و اثرآن بر خواص مکانيکی بود. آزمايشات ريخته گری با استفاده از يک ترکيب آلياژی اصلی حاصله از آميژانها (جدول2) و بوسيله تغيير سيستماتيک عناصر آلياژی که عمده آنها : Mo, Mn, Si, Cu بود، انجام گرفت. ترکيب اصلی نشان داده شده در جدول2 مربوط به آلياژ کلاس 35 (جدول1) است. جدول2 همجنين نشان می دهد که چگونه Mo, Mn, Si, Cu بطور سيستماتيک از اين ترکيب اصلی تغيير می يابند.
چدن خاکستری اصلی در يک کوره القائی در دمای 1500º C ذوب شد که آميژانها به مذاب برای توليد ترکيب مطلوب، اضافه شدند. از طريق ترکيب کردن در دمای 1480-1520º C ، يک قسمت از مذاب با ترکيب مورد نياز با يک ملاقه ريخته شد که با 5/0 درصد وزنی از آلياژ 75Si–25Fe تلقيح شد. برای نمونه های متالوگرافی، قالبهای ساخته شده از ماسه سيليکای خشک مخلوط با رزين به همراه فالبهايی برای نمونه های تست مکانيکی توليد شده با سيليکای خشک اما مخلوط با خاک رس و با يک رنگ گرافيتی با زمینه آب، رنگ شد. هر دو نوع قالب با همان مشخصات سرد کردن در طی ريخته گری بعلاوه همان ميکروساختار توليد شد[9]. دمای ريختگری 1380-1420º C بود. در ادامه ريخته گری، همه فالبهای نمونه ها در هوا با دمای اتاق، خنک شدند.

2-2- متالوگرافی و خواص مکانيکی

ميلگردهای استوانه ای با 120 mm× 30mm Ø و 350mm×30mm Ø برای آزمايش متالوگرافی و تست مکانيکی ، به ترتيب، با استفاده دومی برای تعيين تنش شکست متقاطع و تست ضربه شارپی ريخته گری شدند[9]. نمونه ها برای تعيين تنش کششی نهايی (UTS) از نيمه پايين از هر نمونه شکسته متقاطع، ماشينکاری شدند. برای يک ترکيب مفروض، سه نمونه ريخته گری شدند و ميکروساختار خواص مکانيکی تعيين شدند. با ادامه گرفتن ريخته گری، نمونه ها برای متالوگرافی نوری عمود بر محور طولی ميلگردهای استوانه ای قرار گرفتند و با دنبال کردن خواص مکانيکی، سطوح شکست با استفاده از ميکروسکوپ الکترونی Hitachi S4500 مورد آزمايش قرار گرفتند. اندازه گيری های کسر حجمی از ميکرو اجزای زمينه (فريت، پرليت، آسفريت، مارتنزيت و گرافيت) با استفاده از Adobe Photoshop 6.0 به همراه ميکروسکوپ نوری Nikon Epiphot 200 با camera DXM 1200 Nikon digital انجام گرفت. برای هر نمونه، شش مورد اتفاقی با بزرگنمايی 100 با کسر حجمی از ميکرو اجزای تعيين شده بوسيله متالوگرافی کمی، مورد تحليل قرار گرفتند.
جدول(2): محدوده آلياژهای مورد استفاده در اين کار(درصد وزنی)
 

Cu

Si

Mn

Mo

C

 

عنصر

<0.005

1.41

0.55

<0.005

3.2

ترکيب آلياژ اصلی

0.32, 0.53Mo

1.0Cu

1.0Cu

1.0Cu

 

ترکيب آلياژهای کنترلی

0.55Mn

0.32Mo

0.32Mo

0.55Mn

 

 

2.0Si

1.05Mn

1.80Si

2.0Si

 

 

0.78-1.79

1.41-2.32

0.68-2.34

0.11-1.17

 

 


ترکيب آلياژی اصلی در رديف2 آمده است و آلياژهای کنترلی در رديف3 آمده است و عناصر آلياژی در اين آلياژهای کنترلی بصورت رديف6 تغيير می يابد.
3- نتايج و بحث
3-1-تاثير عناصر آلياژی بر توسعه ميکروساختاری

3-1-1- موليبدن(Mo)
برای يک ترکيب اصلی ثابت Fe–3.2C–1.0Cu–0.55Mn–2.0Si ، موليبدن به مذاب در محدوده x = 0.11–1.17 (wt.%) اضافه شد. تاثير موليبدن بر توسعه ميکروساختاری در جدول3 و شکل1- الف نشان داده شده است که آن می تواند در بزرگتر از 0.62%Mo ديده شود که يک زمينه ميکروساختار 100% آسفريت بدون تغيير در شکل گرافيت را توليد کند. ميکروگرافهای SEM و نوری آلياژ شامل 0.62%Mo در شکل2 با نشان دادن توزيع يکنواخت نوع گرافيت ورقه ای E (شکل2-الف) در يک زمينه و (شکل2-ب) آمده است. برای مقادير کم Mo ، پرليت به شکل لايه ای شبيه به پرليت در فولاد توليد می شود در حالی که برای مقادير بالاتر Mo ، آسفريت بصورت توزيع سوزنی فريت در زمينه آستنيت توليد می شود. مقدار Mo بيش از 0.95% برای توليد کاربيد موليبدن در مرزهای سلول يوتکتيکی معلوم شد.


3-1-2- منگنز و سيليسيم
3-1-2-1- Fe–3.2C–1.0Cu–yMn–zSi. : آزمايشات ريخته گری محدود بر روی آلياژ بدون موليبدن بوسيله افزايش Mn و Si تا 2.75 و 2.9% ،به ترتيب، انجام گرفت[9]. در غياب Mo ، آسفريت در طی ريخته گری توليد نشد و يک ساختار پرليتی با کسر حجمی کم از مارتنزيت توليد شد.
3-1-2-2- Fe–3.2C–1.0Cu–0.32Mo–yMn–zSi. : برای اين آلياژ، اثر Mn و Si در محدوده 0.68-2.34 و 1.41-2.32% ، به ترتيب، بر تشکيل ميکروساختار آسفريت در جدول4 با اثر ترکيب بر ميکروساختار در شکل3 نشان داده شده است. نتايج نشان می دهد که با حضور 0.32%Mo ، هم Mn و هم Si تشکيل آسفريت را تقويت می کنند و مقادير Mn و Si بيشتر از 1.02 و 1.41% ، به ترتيب، برای توليد زمينه ميکروساختار شامل 95% آسفريت و تقريبا" 5% مارتنزيت لازم است. شکل4 ميکروساختار ريختگی چدن خاکستری شامل 1.25%Mo و 2.0%Si را با نشان دادن 95% آسفريت و تقريبا" 5% مارتنزيت (ناحيه خاکستری سياه در منطقه مرکزی شکل4) و بدون گرافيت ورقه ای E را ارائه می دهد.که آن شبيه ناحيه های مارتنزيت است چنانچه در شکل4 نشان داده شده، يک نتيجه از جدايش در آلياژ ريختگی است بنابراين ناحيه های اشباع برای تبديل به فريت بينيتی در طی سرد کردن ناتوان هستند اما به مارتنزيت تجزيه می شوند. برای يک مقدار Si مفروض (1.41-2.32%) ، مقادير Mn بزرگتر از 1.52% ، بينيت کمتری، مارتنزيت و مقداری آستنيت توليد شد(جدول4).
      

                       

شکل(1) : تاثير Mo بر Fe–3.2C–1.0Cu–0.55Mn–1.8Si ( a : ارائه فازها در ميکروساختار b,c : خواص مکانيکی)

دول(3) : اثر Mo بر ميکروساختار ريختگی xMo–0.55Mn–2.0Si Fe–3.2C–1.0Cu–
 

گرافيت ورقه ای

ساختار زمينه (%)

Mo%

درصد

نوع

پرليت

بینیت

آستنيت

7.5

E

100

0

0

0.11

8.2

E

100

0

0

0.22

7.9

E

94.5

4.7

0.8

0.31

7.5

E

80.2

16

3.8

0.40

6.8

E

28

50.9

21.1

0.51

6.5

E

5

68.2

27.8

0.62

6.7

E

2.3

69

28.7

0.73

6.4

E

0

68.1

31.9

0.95

6.1

E

0

68.7

31.3

1.17

                       

شکل(2) : a : نوری و b : ميکروگراف SEM از چدن خاکستری ريختگی شامل 0.62%Mo با نمايش توزيع گرافيت ورقه ای و زمينه کاملا" آسفريت.



                       
شکل(3): اثر Mn و Si بر کسر حجمی آسفريت در چدن خاکستری ريختگی(0.32%Mo-1.0%Cu)


جدول(4) : افزودنی های آلياژی و ارائه فازها در نمونه های متالوگرافی از آلياژ Fe–3.2C–1.0Cu–0.32Mo–yMn–zSi
 

مارتنزيت(%)

پرليت(%)

بینیت(%)

آستنيت(%)

Si%

Mn%

1-2

98

0

0

1.41

0.68

1-2

98

0

0

1.63

1-2

98

0

0

1.85

1-2

98

0

0

2.10

1-2

98

0

0

2.32

1-2

98

0

0

1.41

1-2

98

0

0

1.63

1-2

98

0

0

1.85

1-2

98

0

0

2.10

1-2

98

0

0

2.32

3.1

78

13.1

5.7

1.41

4.2

41.2

40.0

14.6

1.63

1.8

27.3

50.4

20.5

1.85

2.3

15.8

61.6

20.3

2.10

1.5

8.7

68.7

21.1

2.32

5.5

61.3

23.0

10.2

1.41

4.9

7.5

65.4

22.2

1.63

4.3

5.6

68.0

22.1

1.85

4.2

4.8

68.4

22.6

2.10

5.4

1.7

69.9

23.0

2.32

22.8

0

50.2

17.0

1.41

33.5

0

50.5

16.5

1.63

34.4

0

55.6

10.0

1.85

34.2

0

56.4

9.4

2.10

22.3

0

57.2

9.5

2.32

93.3

0

0

6.7

2.10

92.6

0

0

7.4

2.32


همه آلياژها شامل گرافيت ورقه ایE هستند.

شکل(4) : ميکروگراف نوری با نمايش ميکروساختار آسفريت در Fe–0.32Mo–1.0Cu–1.25Mn–2.0Si با نشان دادن ناحيه مارتنزيتی(قسمت مشکی).
3-1-3- مس
برای يک ترکيب اصلی ثابتFe–3.2C–0.55Mn–2.0Si ، موليبدن به مذاب با غلظت 0.32 و 0.53% اضافه شد و سپس به همراه Cu در محدوده 0.78-1.79% تغيير يافت. تاثير Cu بر توسعه ميکروساختار در جدول5 داده شده است. واضح است که يک مقدار کم Mo (0.32%) ، آسفريت را توليد نمی کند در حالی که 0.53%Mo برای توليد افزايشی کسر حجمی از آسفريت(0-95.9%) با افزايش مقدار Cu کافی است. اين گرايش ها عموما" شبيه به ديگر عناصر آلياژی هستند.
3-2- مورفولوژی آسفريت
آسفريت برای تشکيل در طی ريخته گری مستقيم چدن خاکستری بوسيله کنترل افزودنی های آلياژی Mo, Mn, Si, Cu نشان داده شده است. اين ترکيب معمولا" شامل فاز خشن پر مانند، معمولا" به اصطلاح فريت بينيتی [7-3]، جاسازی شده با ذرات آستنيت باقيمانده ( شکل2) است. با استفاده از پراش X-ray و ميکروسکوپ الکترونی عبوری نشان داده شده است[9] که يک فاز BCC بدون کاربيد است. بعلاوه، پراش بازپخشی الکترونی با دقت بالا high-resolution electron backscatter diffraction) ) (HR-EBSD) در يک FEGSEM [11] نشان داده است که و در آسفريت از نظر کريستالوگرافی بوسيله رابطه جهت Kurdjumov–Sachs به هم مربوط می شوند: {1 1 1}γ//{0 1 1}α و (0 1 1) γ//(1 1 1) αکه مشخصات کريستالوگرافی همچون آسفريت دارد که در چدن داکتيل آستمپر شده تشکيل می يابد[12].
3-3- روش تجزيه آستنيت
چندين نفر نشان داده اند که افزودنی های آلياژی به چدن خاکستری بطور موثر ترتيب استحاله را برای توليد يک محدوده از ميکروساختارها اصلاح می کنند.برای مثال، Hayrynen و همکاران [5] ، Mo و Cu را در چدن خاکستری Fe-C-Si تغيير دادند و نشان دادند که ميکروساختار کاملا" آسفريتی می تواند در اندازه های کوچک توليد شود که در اصل، نياز به آستمپرينگ را حذف می کند. کار حاضر همچنين نشان داده است که تغيير سيستماتيک مقادير Mo, Mn, Si, Cu در طی ريخته گری می تواند محدوده وسيع از ميکروساختارهای ريختگی (پرليت کامل، مارتنزيت يا آسفريت با مقادير آلياژی بالا همچنين توليد کننده کاربيدهای آلياژی) را توليد کند.

جدول(5): اثر Cu بر ميکروساختار ريختگی Fe–3.2C–wCu–xMo–0.55Mn–2.0Si
 

گرافيت(%)

پرليت(%)

بینیت(%)

آستنيت(%)

Cu(%)

Mo(%)

6.8

100

0

0

0.91

0.32

6.5

100

0

0

1.26

6.6

100

0

0

1.40

7.1

97

3.0

0

1.48

7.5

95.9

4.1

0

1.65

7.8

96.8

3.2

0

1.72

6.3

86.5

10.9

2.6

0.78

0.53

6.2

33.8

48.6

12.3

0.98

6.7

31.6

55

13.4

1.05

6.9

22.3

58.6

19.2

1.14

7.3

11.5

65

23.5

1.36

7.1

8.8

68.2

23

1.75

7.8

4.7

68.1

27.8

1.79

 ترتيب عمومی استحاله در چدن خاکستری ريختگی طی سرد شدن پيوسته تا دمای محيط شبيه به آنچه که بوسيله آستمپرينگ توليد می شود است. با وجود اين، ميکروساختارهای توليد شده بوسيله فرايند اخير بطور قابل توجه تاثيرگذارند بوسيله : 1- شرايط آستنيته کردن(دمای آستنيته کردن و زمان نگهداری) 2- دما(و زمان) که آستنيت به بينيت و غيره تجزيه می شود[13]. بنابراين ميکروساختار نهايی چدن خاکستری آستمپر شده به تعداد متغيراتی که آنرا برای مقايسه مستقيم با کار حاضر مشکل می کند، وابسته است. تجزيه آستنيت در چدن خاکستری ريختگی ممکن است براحتی با استفاده از دياگرامهای استحاله سرد کردن پيوسته (CCT) توضيح داده شود. اما، اين دياگرامها برای توليد در طی ريخته گری شمشهای با قطر بزرگ (30mm) مشکل است همچنانکه نرخ سرد کردن زياد(100–200º C بر دقيقه در محدوده دمايی 300–600º C ( تغيير نمی يابد. يک دياگرام CCT شماتيک برای چدن خاکستری هايپريوتکتيک در شکل5 داده شده است که روش مورد انتظار تجزيه آستنيت را همچون تابعی از مقدار آلياژ (Mo در اين دياگرام) نشان می دهد. برای مقادير کم از Mo ، استحاله ها زير مورد انتظار هستند[2و5] :
                                     مواد
اما مقادير بزرگتر عناصر آلياژی همچون Mo تمايل به تغيير ناحيه توليدی استحاله نفوذی با زمانهای طولانی تر بدون تغيير ناحيه بینیت بطور افزايشی دارد[5]، بنابراين اجازه می دهد تا آسفريت تشکيل شود :
                                     مواد

                         

شکل(5) : دياگرام CCT شماتيک تاثير افزودنی های آلياژی(همچون Mo ) بر موقعيت ناحيه توليدی استحاله ای فريت، پرليت، آسفريت و مارتنزيت.

نوع بينيت تشكيل شده در داخل فاز آستنيت طي سرد شدن پيوسته بوسيله غلظت و نوع افزودني هاي آلياژي تاثيرگذار خواهد بود و ممكن است از بينيت بالايي تا بينيت پاييني تغيير يابد[13]. براي مقادير پايين MO (<1.0%) ، ميكروساختار زمينه شامل فريت بينيت با كاربيد آزاد و آستنيت باقيمانده با كربن اشباع شده است[5و9و13‍]. غلظتهاي بالا از عناصر آلياژي همچون Mn ، همچنين قابليت سختي پذيري آلياژ را افزايش مي دهد و مقداري مارتنزيت در طي سرد شدن پيوسته تشكيل مي شود(همچنانچه در شكل6a نشان داده شده است). عناصر آلياژي معين همچنين تمايل قوي براي جدايش در محلهاي مختلف در ميكروساختار دارند بعلاوه كاربيدهاي آلياژي تشكيل مي دهند. جدايش و تشكيل كاربيد يك اثر مضر بر خواص مكانيكي چدن خاكستري دارند همچنانكه در بخش 3-4 بحث مي شود.

3-4- تاثير ميكروساختار بر خواص مكانيكي
كلاس استاندارد 35 چدن خاكستري بطور كامل پرليتي با يك UTS و FTS اسمي 252 و 475MPa ،(به ترتيب) مي باشد‍]2]. آلياژ اصلي آزمايشي داده شده در جدول(2) با يك UTS و FTS، 285 و 530MPa (به ترتيب) معلوم شد، با وجود اينكه اين آلياژ همچنين يك ميكروساختار كاملا" پرليتي را نشان مي دهد. بهبود در خواص مكانيكي احتمالا" نتيجه افزودن 1.0%Cu است كه شناخته مي شود كه استحكام دهنده محلول جامد قابل قبول فريت و همچنين بعنوان ريزكننده فضاي پرليت عمل مي كند[2].
مثالهاي انتخاب شده از اثر افزودني هاي آلياژي بر خواص مكانيكي چدن خاكستري در شكل 1b,c و 6b,c داده شده، نشان مي دهد كه براي Fe–3.2C–1.0Cu–0.55Mn–2.0Si يك افزايش در موليبدن، افزايش در UTS و FTS با بهبود قابل توجه در مقاومت به ضربه شارپي و داكتيليته در طي خمش عرضي را نتيجه مي دهد(شكل1c ). مي توان ديد كه تركيب بهينه خواص مكانيكي براي يك آلياژ با مقدار 0.7%Mo بدست مي آيد كه به ميكروساختار زمينه 100% آسفريت مربوط مي شود. در مقادير بالاتر Mo ، يك افت جزئي در خواص مكانيكي وجود دارد كه احتمالا" نتيجه جدايش موليبدن به مرزهاي سلول يوتكتيك در طي ريخته گري و همچنين از طريق تشكيل كاربيدهاي موليبدن در اين ناحيه ها باشد. براي Fe–3.2C–1.0Cu–0.32Mo–2.0Si ، يك افزايش در منگنز تا 1/1% همچنين UTS و FTS (شكل6b ) و مقاومت به ضربه و داكتيليته(شكل6c ) را ، اما با يك مقدار كمتر از MO، بهبود مي بخشد. در اين آلياژ، تركيب بهينه در خواص مكانيكي با يك ميكروساختار زمينه شامل 27% پرليت، 70% آسفريت و 3% مارتنزيت همراه مي شود(جدول4).

         
شكل6- تاثير منگنز بر Fe–3.2C–1.0Cu–0.32Mo–2.0Si a : فازهاي حاضر در ميكروساختار ريختگي b,c : خواص مكانيكي.

شكل7 توضيح مي دهد كه چگونه UTS و FTS بوس‍يله ميزان ارائه آسفريت در ميكروساختار براي آلياژهاي داده شده در قسمت3-1 تحت تاثير قرار مي گيرند. يك رابطه خطي معقول بين مقدار آسفريت و استحكام وجود دارد. پراكندگي در داده ها احتمالا" نتيجه تاثير عنصر آلياژي داده شده است : 1- استحكام دهي محلول جامد يك فاز خاص، 2- گرايش آن به جدايش به مرزها و فازهاي مختلف، 3- تمايل تشكيل كاربيد آن و 4- تاثير آن بر قابليت سختي پذيري[10]. كسرهاي نسبي از فازها (پرليت، آسفريت و مارتنزيت) در ميكروساختار مفروض با نوع بينيت كه نسبت آستنيت/بینیت را در آسفريت تشكيل مي دهد، نيز احتمالا" فاكتورهاي سهيم در پراكندگي هستند.

                   
شكل7- تاثير كسر حجمي آسفريت در ميكروساختار ريختگي بر UTS و FTS

شكل7 بطور واضح نشان مي دهد كه يك افزايش در آسفريت، يك افزايش اساسي در خواص مكانيكي را نتيجه مي دهد. يك آزمايش سطوح شكست نمونه هاي TFS نشان داد كه شكست بوسيله گسستگي لايه هاي گرافيت در مقادير تنش پايين شروع مي شود كه ميكرو ترك ها را ايجاد مي كند(شكل8a ).

                 
شكل8- ميكروگرافهاي اسكن الكتروني با نشان دادن سطح شكست a : چدن خاكستري آسفريتي و b : چدن خاكستري پرليتي معمولي.

شکست نشان می دهد که بوسيله ميکرو ترک ها از ميان گرافيت و زمينه اتفاق می افتد جايی که برای مورفولوژی گرافيت مفروض، تنش شکست يک تابع از استحکام و تافنس زمينه است. در مقايسه با يک ميکروساختار پرليتی(شکل 8b )، انتشار ترک از ميان آستنيت بطور منطقی مشکل تر از طريق نرخ بالای کار سختی اين فاز با استحاله به مارتنزيت در طی تغيير شکل، يک پديده به اصطلاح "استحاله-پلاستيسيته"(TRIP) است[10]. بنابراين مرزهای فاز آستنيت/بینیت همراه با داکتيليته خوب بینیت[5]، انرژی قابل ملاحظه برای انتشار ترک نياز دارد. در مجموع، اين فاکتورها، يک استحکام و تافنس خيلی بالاتر چدن خاکستری آسفريتی را در مقايسه با گريدهای پرليتی معمول را نتيجه می دهند[6و7و14]. نتايج حاضر نشان داده است که افزودنی های آلياژی قويا" بر نوع و توزيع اجزای ميکروسکوپی در يک چدن خاکستری ريختگی تاثير می گذارد. يک آلياژ با ترکيب تقريبی Fe–3.2C–1.0Cu–0.55Mn–0.7Mo–2.0Si شامل 100% آسفريت با اين آلياژ، ترکيب عالی از خواص مکانيکی را نشان می دهد : UTS=530MPa TFS=920Mpa و انرژی ضربه شارپی و شکست 6mm در طی تست عرضی (خط چين در شکل1). توجه داشته باشيد که Mo بيش از 7/0% ، تشکيل کاربيد موليبدن را در مرزهای سلول يوتکتيک با يک کاهش پيوسته در خواص مکانيکی تقويت می کند. از آنجاييکه کاربيدهای آلياژی همچنين يک اثر مضر بر قابليت ماشينکاری چدن دارند[2]،از افزودن Mo بيش از 7/0% بايد جلوگيری شود.

4- نتايج
افزودن آلياژی Mo, Mn, Si, Cu در طی ريخته گری با قالب ماسه ای يک چدن خاکستری نوع 35 از ASTM با ترکيب Fe–3.2C–0.55Mn–1.41Si برای توليد يک محدوده وسيع از ميکروساختارها و خواص مکانيکی مشخص شد. معلوم شد که:
1- راجع به ميزان و نوع افزودنی آلياژی، گرافيت نوع E در همه آلياژها تشکيل می شود.
2- برای چدن خاکستری بدون Mo ، ترکيبات مختلف Mn, Cu, Si تشکيل يک ميکروساختار شامل يک پراکندگی از آستنيت و فريت بینیتی (به اصطلاح آسفريت) را تقويت می کند اما يک آلياژ پرليتی کامل شامل لايه های گرافيت توليد شد.
3- يک زمينه آسفريت در يک آلياژ شامل 0.32%Mo بوسيله اضافه کردن بيشتر از 1.02%Mn برای همه مقادير Si توليد شد يا برای يک مقدار ثابت 1.21%Mn و بيشتر از 1.41%Si ، يک ميکروساختار مارتنزيتی شامل يک کسر کوچک از آستنيت باقيمانده ايجاد شد.
4- يک رابطه خطی معقول بين کسر حجمی آسفريت تشکيل شده و استحکام با مقداری پراکندگی در داده ها همچون يک نتيجه طبيعی از يک عنصر آلياژی مفروض به جدايش و تشکيل کاربيدهای آلياژی در طی ريخته گری وجود دارد.
5- ترکيب بهينه خواص مکانيکی در يک چدن خاکستری ريختگی با ترکيب تقريبی Fe–3.2C–1.0Cu–0.7Mo–0.55Mn–2.0Si توليد شد که يک ميکروساختار 100% آسفريت بدون کاربيد، شامل لايه های گرافيت نوعE را نشان می دهد. اين آلياژ يک ميکروساختار و خواص مکانيکی قابل مقايسه با چدن خاکستری آستمپر شده را بدون مشکلات زياد آستمپرينگ، دارد.


دسته بندی : فلزات آهنی

روي

اطلاعات اولیه

روی ، یکی از عناصر شیمیایی در جدول تناوبی است که نماد آن Zn و عدد اتمی آن 30 می‌باشد.

تاریخچه

آلیاژهای روی از قرنها پیش استفاده می‌شده است. کالاهای برنجی که به 1000-1400 سال پیش باز می‌گردند، در فلسطین پیدا شده‌اند و اشیاء رویی با 87% روی در Transylvania ما قبل تاریخ یافت شده‌اند. به خاطر نقطه جوش پایین و واکنش شیمیایی این فلز ( روی جدا شده دود شده و قابل دستیابی نبود ) خصوصیات واقعی این فلز در زمان باستان مشخص نشده بود.

ساخت برنج به رومی‌ها نسبت داده شده و مربوط به 30 سال پیش از میلاد می‌باشد. آنها Calamine و
مس را با یکدیگر در بوته آهنگری حرارت می‌دادند که در این عمل اکسید روی در Calamine کاهش می‌یافت و فلز روی آزاد توسط مس به دام انداخته می‌شد و به شکل آلیاژ در می‌آمد. برنج بدست آمده ، یا در قالب ریخته می‌شد یا با چکش به شکلهای مختلف در می‌آمد.

استخراج و تصفیه روی ناخالص در 1000 سال پیش از میلاد مسیح در هند و چین صورت می‌گرفته است. در غرب نیز کشف فلز روی به "Andreas Marggraf" آلمانی در سال 1746 بر می‌گردد. شرح تولید برنج در اروپای غربی در کتابهای Albertus Magnus در سال 1284 به چشم می‌خورد. این فلز در قرن 16 به میزان قابل توجه شناخته شد.

"Agricola" در سال 1546 اعلام کرد که وقتی که سنگ معدن روی گداخته می‌شود، فلز سفید می‌تواند منقبض شود و دیواره کوره را بتراشد. او در نوشته‌های خود به این مسئله نیز اشاره کرد که فلزی شبیه آن به نام Zincum در Silesia تولید می‌شده است. "پاراسلیوس" (متوفی به سال 1541) اولین کسی در غرب بود که گفت Zircum فلزی جدید است که در مقایسه با فلزات دیگر خواص شیمیایی جداگانه ای دارد. نتیجه آن است که فلز روی زمانی شناخته شده که "Margaraf" کشفیاتش را شروع کرد و در حقیقت فلز روی دو سال زودتر توسط شیمیدان دیگری به نام "Anton Von Swab"
تجزیه شده و بدست آمده بود. اما تحقیقات Margraaf جامع‌تر بود و بخاطر تحقیقاتش به‌عنوان کاشف روی شناخته شد.

قبل از کشف تکنیک غوطه‌وری سولفید روی ، Calamine تنها منبع معدنی فلز روی بوده است.

پیدایش

روی ، بیست و سومین عنصر در پوسته زمین از نظر فراوانی می‌باشد. بسیاری از سنگهای معدنی سنگین استخراج شده حاوی 10% آهن و 40-50% روی می‌باشند. معادنی که از آنها روی استخراج می‌شود، شامل Sphakrite , Zinc Blende , Smith sonite , Calamine , Franklinite می‌شوند.

خصوصیات قابل توجه

روی ، فلزی است که در Vielle Montagne و Zinkgruvan استخراج می‌شود و برای آبکاری فولاد مورد استفاده قرار می‌گیرد. مانند فلزات دیگر به‌آرامی واکنش نشان می‌دهد. با اکسیژن و دیگر غیر فلزات ترکیب شده ، با اسید رقیق واکنش نشان داده ، گاز هیدروژن آزاد می‌کند. چهارمین فلز متداول و مورد استفاده بوده ، بعد از آهن ، آلومینیوم و مس ، بیشترین فلز تولیدی می‌باشد. حالت اکسیداسیون متداول این عنصر +2 است.

کاربردها

  • روی برای آبکاری فلزات استفاده می‌شود تا از زنگ زدگی آنها جلوگیری کند.

  • روی در آلیاژهایی نظیر برنج ، Nickel Silver ، فلز ماشین تحریر ، فرمولهای مختلف لحیم نقره آلمانی و .... بکار می‌رود.

  • برنج ، بخاطر استقامت و مقاومت در برابر زنگ زدگی و خوردگی کاربردهای وسیعی دارد.

  • روی بطور گسترده در صنعت خودرو سازی در Die Casting ها استفاده می‌شود.

  • روی لوله‌ای به‌عنوان قسمتی از محتوی باطری‌ها مورد استفاده قرار می‌گیرد.

  • اکسید روی به‌عنوان رنگدانه‌های سفید در رنگهای آبی و همچنین به‌عنوان فعال کننده در صنعت Rubber استفاده می‌شود. به‌عنوان Over the counter ointment به‌صورت لایه نازکی بر روی پوست بی‌حفاظ صورت و بینی استفاده می‌شود تا از کم شدن آب پوست جلوگیری کرده ، در برابر آفتاب سوختگی در تابستان و باد زدگی در زمستان از پوست محافظت کند. استفاده از آن برای کودکان در هر مرحله از عوض کردن کهنه کودک توصیه می‌شود، زیرا از تحریکات پوستی جلوگیری می‌کند.

  • کلرید روی به‌عنوان بوگیر و همچنین محافظ چوب نیز مورد استفاده قرار می‌گیرد.

  • سولفید روی در رنگدانه‌های درخشان ، برای تولید عقربه‌های ساعت و موارد دیگری که در تاریکی می‌درخشد، استفاده می‌شود.

  • محلولهای ضدعفونی کننده ای که از Calamine ساخته شده و ترکیبی از Zn-Hydroxy-Carbonate و سیلیکات است، برای درمان جوشهای پوستی استفاده می‌شود.

  • فلز روی شامل ویتامینهای مورد مصرف روزانه و مواد معدنی نیز می‌باشد و با توجه به فلزات دیگر ، این فلز دارای خاصیت ضد اکسیداسیون است که از پیری زود رس پوست و مفصلهای بدن محافظت می‌کند.

  • با بررسی خواص روی به این نتیجه رسیده‌اند که این عنصر می‌تواند به بهبودی بعد از عمل جراحی سرعت بخشد.

  • Zinc Gluconate Glycine از قرصهای مکیدنی برای درمان سرما خوردگی و التهاب دهان و لوزه‌ها می‌باشد.

نقش بیو لوژیکی

روی از عناصر ضروری زندگی انسان است که برای بقا و زندگی انسان لازم است. کمبود روی در حیوانات موجب افزایش وزن می‌شود. روی در انسولین ، Zinc Finger Proteinsو آنزیم‌هایی مانند Super Oxide Dismutase وجود دارد. بر اساس بسیاری از منابع ، مصرف قرصهای حاوی روی می‌تواند در برابر سرماخوردگی و آنفولانزا ایمنی ایجاد کند. با این حال هنوز بر سر این مساله اختلاف نظر وجود دارد.

ترکیبات

اکسید روی معروفترین ترکیبی است که بطور گسترده در ترکیبات روی مورد استفاده قرار می‌گیرد و به‌عنوان رنگدانه سفید در رنگها استفاده می‌شود. همچنین در صنعت Rubber کاربرد داشته و به‌عنوان Opaque Sunscreen فروخته می‌شود. دیگر ترکیبات روی به استفاده غیر صنعتی می‌رسند، مانند: کلرید روی در بو گیر ، سولفید روی در رنگهای شب‌تاب و متیل روی در آزمایشگاه شیمی آلی. تقریبا یک چهارم فراورده‌های روی به‌صورت ترکیبات روی مورد مصرف قرار می‌گیرند.

ایزوتوپها

روی طبیعی در 4 ایزوتوپ پایدار تشکیل شده است: Zn-64 , Zn-66 , Zn-67, Zn-68 که در این میان ، Zn-64 فراوانترین آنها (48.6% فراوانی طبیعی) می‌باشد. برای این عنصر 22 رادیو ایزوتوپ اکتیو شناسایی شده است که در میان آنها ، Zn-65 با نیمه عمر 244.26 روز و Zn-72 با نیم عمر 46.5 ساعت پایدارترین و فراوانترین ایزوتوپ می‌باشند. دیگر ایزوتوپهای رادیو اکتیو این عنصر ، نیمه عمرهای کمتر از 14 ساعت و بیشتر آنها نیمه عمری کمتر از یک دقیقه دارند. این عنصر همچنین 4 حالت متا دارد.

هشدارها

فلز روی ، سمی نیست، اما حالتهایی به نام Zinc Shakes و یا Zinc Chills وجود دارند که با استنشاق اکسید روی تازه و خالص تحریک می‌شوند.

شناخت محیط رشد روی

روی در تولید و فعالیت آنزیم‌ها ، همچنین در ایجاد پروتئین موثر است. کمبود روی باعث کوچک ماندن برگهای گیاه و کوتاه شدن فاصله میان گره‌ها می‌شود. واکنش خاک ، بر قابل استفاده بودن روی برای گیاه ، موثر می‌باشد. معمولاً در خاکهای قلیایی و در حاکهای محتوی فسفر بیش از حد ، روی غیر قابل استفاده می‌گردد. در خاکهای شنی ، به‌راحتی شسته شده ، از زمین خارج می‌شود. برای رفع کمبود روی ، سولفات روی را به خاک اضافه می‌کنند. هر چند که شرایط خاکهای ایران سولفات روی شدیداً تثبیت می‌شود و بازده آن کم است و بصورت Zn EDTA بازده بیشتری دارد.


دسته بندی : فلزات غیرآهنی

نيكل

اطلاعات اولیه
نیکل ، عنصرشیمیایی جدول تناوبی است که نماد Ni داشته و عدد اتمی آن ، 28 است.

تاریخچه

استفاده از نیکل ، قدمت باستانی داشته ، به 3500 سال قبل از میلاد مسیح باز می‌گردد. برنزهایی که از سوریه امروزی یافت شده‌اند، حاوی حدودا 2% نیکل بوده و دست‌نوشته‌های چینی اشاره بر این دارند که مس سفید در 1400 تا 1700 سال قبل از میلاد مسیح در مشرق زمین استفاده می‌شد. اما از آنجا که معادن نیکل و مس در آن روزگار به‌راحتی مورد اشتباه قرار می‌گرفتند، تمام دانستنیهای دقیقتر به دوران معاصر باز می‌گردد.

کانی‌هایی که حاوی نیکل هستند، از جهت رنگ‌دهی به شیشه کاربرد داشتند و از ارزشی فراوان بر خوردار بودند. در سال 1751 شخصی به نام "Baron Axel Fredrik" تلاشهایی را برای استخراج مس از معدن نیکل انجام داد و که در نتیجه فلزی سفید بدست آورد که آن را نیکل نامید.

اولین سکه خالص نیکلی در سال 1881 ساخته شد.

پیدایش

اکثر نیکلهای بدست آمده از دو نوع معدن بدست آمده‌اند، اولی خاکهای آجری رنگ بوده که مهمترین معدن سنگ نیکل هستند و دومی سولفید موجود در ماگمای زمین می‌باشد. منطقه Sudbury در Ontario کانادا 30% نیکل جهان را تولید می‌کند. معادن دیگر در روسیه استرالیا کوبا و اندونزی می‌باشند. با این وجود این باور وجود دارد که بیشتر نیکل موجود در زمین در هسته این سیاره تمرکز یافته است.

خصوصیات قابل توجه

نیکل یک فلز سفید نقره‌ای است که به‌خوبی جلا می‌گیرد. از گروه آهن‌ها است که سخت و قابل انعطاف بوده ، هادی جریان الکتریسیته می‌باشد و به‌راحتی با گوگرد و آرسنیک ترکیب می‌شود.

با توجه به اینکه نیکل ، دوام زیادی در هوا داشته ، اکسیده نمی‌شود، برای تولید سکه‌های پول فلز کاری برنج و
آهن و همچنین برای ساخت ابزار آلات شیمیایی در آلیاژهای خاص مانند نقره آلمانی کاربرد دارد و معمولا با کبالت همراه هست که هر دوی آنها در آهن‌های شهاب سنگی یافت می‌شوند. نیکل برای آلیاژهایی که بوجود می‌آورد، بسیار با ارزش می‌باشد.

معمولترین حالت اکسیداسیون نیکل ، 2+ است و این در حالی است که نیکل 3+ و 1+ نیز به‌ندرت مشاهده می‌شوند.

کاربردها

تقریبا 65% نیکل مصرفی در دنیای غرب برای تولید لوازم فولاد ضد زنگ بکار می‌رود. 12% دیگر آن به مصرف آلیاژهای عالی می‌رسد. 23% باقی مانده نیز در مصارفی مانند تولید آلیاژ فلزات ، باطری‌های قابل شارژ ، کاتالیزورها ، سکه‌ها و ابزار ریخته‌گری و فلزکاری تقسیم می‌شود.

مصارف کلی نیکل به صورت زیر است:


  • فولاد ضد زنگ و دیگر آلیاژهای ضد زنگ.
  • فولاد نیکل برای تولید فلز سلاح‌ها و گاو صندوق‌ها کاربرد دارد.
  • آلیاژ آلنیکو برای تولید آهن‌ربا
  • فلز Mu که قابلیت نفوذ پذیری مغناطیسی بالایی داشته و برای صفحه نمایشهای مغناطیسی استفاده می‌شود.
  • آلیاژ کابلهای انتقال حافظه که در ساخت ربات‌ها کاربرد دارد.
  • باطری‌های قابل شارژ ، مانند باطریهای نیکل هیدروکسیدی و نیکل کادمیوم.
  • ضرب سکه. در ایالات متحده و کانادا ، نیکل برای سکه‌های 5 سنتی استفاده می‌شود که آنها نیز نیکل نامیده می‌شوند.
  • آبکاری الکتریکی
  • ظروف ضد حرارت برای استفاده در آزمایشگاه‌های شیمی
  • نیکل مشتق شده ، یک کاتالیزور است که برای هیدروژنه کردن روغن سبزیجات بکار می‌رود.

نقش بیولوژیکی

اکثر مواد هیدروژنی ، حاوی نیکل و مجموعه های گوگرد-آهنی هستند. هسته نیکل یک عنصر اصلی در تمام مواد هیدروژنی بوده که عملکرد آنها بیشتر اکسیداسیون است تا آزاد کردن هیدروژن. هسته نیکل به این دلیل وجود دارد که بتواند تغییرات ناشی از عمل اکسیداسیون را تحمل کند. همچنین شواهد چنان نشان می‌دهند که هسته نیکل قسمت فعال این آنزیمها هستند. همچنین منوکسید کربنهایی در عمل جدا سازی هیدروژن وجود دارند که حاوی نیکل هستند. درباره ساختار نیکل اطلاعات زیادی در دست نیست.

ایزوتوپها

نیکلی که در طبیعت به وجود می آید از 5 ایزوتوپ پایدار تشکیل شده است که عبارتند از Ni-58 ، Ni-59 ، Ni-60 ، Ni-61 ، Ni-62 از بقیه فراوانتر می‌باشد و 59-Ni از بقیه پایدارتر بوده و نیمه عمر تجزیه آن حدودا 76000 سال می‌باشد. نیمه عمر تجزیه نیکل 63-Ni صد سال و نیکل Ni-56 ، در حدود 6.077 روز می‌باشد. تمامی ایزوتوپهای رادیواکتیوی ، نیمه عمر تجزیه‌ای کمتر از 60 ساعت دارند و عمر تجزیه بیشتر آنها کمتر از سی ثانیه می‌باشد. Ni-56 در مقیاس و حجمهای بزرگ در ستاره‌های بسیار بزرگ تولید شده و انحنای نور این ستاره‌های بزرگ با تجزیه نیکل و کبالت و بعد از به آهن مرتبط است.

نیکل -59 یک عنصر هسته با عمر طولانی و نیمه عمر 76000 سال است. نیکل کاربردهای زیادی در زمین شناسی ایزوتوپی دارد. نیکل -59 برای تعیین تاریخ دوره‌های زمین شناسی کاربرد داشته و میزان غبار ته‌نشین شده در یخهای فرا زمینی را تعیین می‌کند. نیکل -60 محصول منقرض شده Fe می‌باشد، چرا که Fe-60 منقرض شده عمر زیادی داشته و پایداری آن در مواد سیستم خورشیدی که تمرکز بالایی دارند، گوناگونی زیادی را در ترکیبات ایزوتوپی Ni- 60 ایجاد می کند. بنابراین میزان Ni-60 موجود در مواد فرا زمینی می‌تواند ما را به حقیقت اصلی سیستم خورشیدی و تاریخچه اولیه آن رهنمون سازد.

هشدارها

نیکل را نباید بیشتر از 0.05 mg/cm3 در مجاورت ترکیبات حلال قرار داد. همچنین به نظر می‌رسد که دود و سولفید نیکل ، سرطان زا باشد. نیکل کربنیک یک گاز بسیار سمی است. تماس نیکل با پوست افراد حساس ممکن است ایجاد آلرژی کند. مقداری مجاز نیکل مصرفی در محصولاتی که با دست انسان تماس دارد، مطابق اتحادیه اروپایی می‌باشد. بر اساس یک گزارش منتشر شده در مجله Nature در سال 2002 ، محققین دریافته‌اند که مقدار نیکل موجود در سکه‌های یک و دو Euro بیشتر از حد استاندارد است. به نظر می‌رسد که این عمل بدلیل واکنشهای گالوانیک رخ می‌دهد.


دسته بندی : فلزات غیرآهنی

بررسي عوامل موثر به حفرات گازي و انقباضي

حفره‌هاي انقباضي و گازي يكي از مهمترين عيوب ريخته‌گري محسوب مي‌شوند. تا كنون تحقيقات زيادي توسط محققين گوناگون براي بررسي اين حفره‌ها انجام شده است. اكثر فلزات در هنگام انجماد دچار كاهش حجم مي‌گردند. اين كاهش حجم بايد بگونه‌اي جبران گردد. به همين حفره‌هاي انقباضي به وجود مي‌آيند. به وجود آمدن حفره‌هاي گازي به اين صورت مي‌باشد كه گازهاي محلول در مذاب در هنگام انجماد فلز از حالت اتمي به مولكولي تبديل مي شوند و حفره گازي به وجود مي‌آيد.
در اين مقاله عوامل موثر به اندازه، شكل، مقدار و توزيع تخلخل مورد بررسي قرار گرفته است. اندازه تخلخل مي‌توان متأثر از چند عامل باشد:
1ـ ضخامت قطعه: هر چه ضخامت كمتر مي‌شود، اندازه تخلخل كاهش مي‌يابد.
2ـ تعداد جوانه: با افزايش تعداد جوانه، اندازه دانه كاهش مي‌يابد و بالطبع با كاهش اندازه دانه، اندازه تخلخل كاهش مي‌يابد.
3ـ عمليات بهسازي: عمليات بهسازي باعث تشكيل تخلخل‌هاي درشت و كروي شكل مي‌شود.
از جمله عواملي كه به شكل تخلخل تأثير مي‌گذارد عمليات بهسازي مي‌باشد. عمليات بهسازي سبب تبديل ساختار سوزن شكل فازسيليسم يوتكتيكي به حالت رشته اي شكل و ظريف مي‌گردد. شكل تخلخل‌هاي ريز و پراكنده در آلياژهاي بهسازي نشده تابع شكل و اندازه فضاهاي بين دندريتي است. در اين حالت تخلخل‌ها عمدتاً حالت كشيده و نازك دارند. از طرفي تخلخل در آلياژهاي بهسازي شده عمدتاً درشت‌تر و كروي‌تر بوده و مورفولوژي آن‌ها كمتر تابع شكل و اندازه و فضاهاي بين دندريتي مي‌باشد.
مقدار تخلخل به عوامل زير بستگي دارد:
1ـ شرايط انجماد هيدروژن مذاب زيادتر باشد اثر استرانسيم براي بهسازي بر مقدار تخلخل بيشتر است.
2ـ عمليات فيلتر كردن: افزايش تميزي مذاب سبب كاهش اثرات عمليات بهسازي بر افزايش تخلخل مي‌گردد.
3ـ سرعت انجماد: با افزايش سرعت انجماد، مقدار تخلخل كاهش مي‌يابد.
توزيع تخلخل به چند صورت مي‌باشد:
1ـ پراكنده: كه در مورد انجماد خميري اتفاق مي‌افتد.
2ـ متمركز: اين حالت در انجماد پوسته‌اي ايجاد مي‌شود.
3ـ محيطي: در صورتي انجماد هم از اطراف و هم از مركز اتفاق بيافتد، اين حالت به وجود مي‌آيد.

1- چگونگي ايجاد مك هاي گازي:
گازها در حالت مذاب نسبت به حالت جامد انحلال بيشتري در فلزات دارند.با كاهش درجه حرارت گازهاي حل شده در مذاب(به صورت اتمي)به تدريج از حالت اتمي خارج مي شوند وبه صورت مولكولي(حباب)در مي آيند.در اين صورت گازهاي مولكولي آرام آرام از سطح مذاب خارج مي شوند.سرعت خروج حباب هاي گازي ايجاد شده به عوامل مختلفي بستگي دارد كه از آن جمله گرانروي مذاب اندازه حباب وشكل وعمق پاتيل را مي توان نام برد.
بديهي است با كاهش درجه حرارت گرانروي مذاب افزايش مي يابد.در نتيجه سرعت خروج حباب هاي گازي به تدريج كاهش مي يابد.با شروع انجماد مذاب دو مشكل مهم در خروج حباب هاي گازي ايجاد مي شود:
الف- اختلاف حلاليت در حالت مذاب وجامد:در بسياري از فلزات وآلياژها اختلاف حلاليت گازها در حالت جامدومذاب بسيار زياد است.بديهي است در هنگام انجمادگازهاي زيادي از حالت اتمي (انحلال)به حالت مولكولي تبديل مي گردند به گونه اي كه به ناگاه مقدار اين تحول به چندين برابر افزايش مي يابد.به عبارت ساده تر در يك فاصله زماني كوتاه مقادير زيادي از گازهاي حل شده به حباب هاي گازي تبديل مي شوند.
ب- محبوس شدن حباب ها: اگر فرض شود كه حباب هاي گازي ايجاد شده در هنگام انجماد(دامنه انجماد)بتوانند از مذاب خارج شوند در اين صورت مشكلي به نام مك وتخلخل گازي در قطعات ريختگي وجود ندارد.اما در عمل به دليل افزايش گرانروي مذاب ونيز وجود هسته هاي جامد به طور جدي حركت حباب هاي گازي با مشكل مواجه مي شوند وبه عبارت ديگر حباب هاي گازي در لابلاي ذرات جامد محبوس مي شوند.
عوامل موثر بر ميزان مك هاي گازي:
1- مقدار اختلاف حلاليت گاز در حالت جامد ومذاب
2- نوع انجماد
3- سرعت سرد كردن مذاب
4- آخال ها(ناخالصيها)
5- عناصر آلياژي
6-سيستم راهگاهي
7-شكل اندازه و وزن قطعه
تشكيل مك هاي گازي بيشتر در دامنه انجماد هاي زياد انجام مي شود.
رابطه 1
 

 مواد

رابطه فوق مشخص كننده آنست كه براي تشكيل حبابي به شعاع r فشار داخلي حباب بايد حداقل برابرPg باشد كه حباب هاي بسيار كوچك فشار داخلي بسيار زياد خواهد بود وبه دليل عدم دستيابي به چنين فشار بالائي عملا حباب ها نمي توانند در اندازه هاي خيلي كوچك تشكيل شوند به هر صورت اين اندازه نمي تواند از اندازه اتم فلز كوچك تر باشد.
چنانچه فشار لازم براي حذف تنش هاي سطحي در فصل مشترك گاز- فلز برابر Pst منظور شود در جريان انجماد به تدريج تنش سطحي افزايش يافته ودر نتيجه Pst بزرگتر وفشار داخلي براي تشكيل حبابي به شعاع rبيشتر خواهد بود.
با توجه به پديده انقباض در دامنه انجماد وكاهش فشار نسبي در فصل مشترك مايع- جامد مجموع فشار داخلي سيستم كاهش يافته واز اينرو رابطه فشار به صورت زير نوشته مي شود:

كه در آن Psh فشار انقباضي كاهش موضعي فشار در فصل مشترك مايع- جامد است.

2- مکانیزم تشکیل حفره های گازی وانقباضی:
2-1- حفره های انقباضی[8]:
اکثر فلزات در هنگام انجماد دچار کاهش حجم می گردند.به عنوان مثال آلومینیوم خالص دارای 14-7% انقباض ضمن انجماد است.این کاهش حجم باید بگونه ای جبران گردد.در صورتی که مذاب اضافی وجود نداشته باشد به ناچار در قطعه حفره ای بوجود خواهد آمد که به آن حفره انقباضی می گویند که خود بنابر عوامل گوناگون از جمله مدل انجماد به دو دسته متمرکز وپراکنده تقسیم می شوند.
حفره انقباضی متمرکز معمولا در آلیاژهای دامنه انجماد کوتاه مشاهده می شود.در این حالت از آنجائیکه جبهه انجماد همواره برقرار بوده وتفکیک اصولی بین مناطق جامدومایع امکانپذیر است کسری های ناشی از انقباض برای قسمت های جامد توسط مذاب مقابل فصل مشترک تامین می شود وانقباض در مناطق گرم متمرکز می گردد.
حفره های انقباضی پراکنده معمولا در آلیاژهای دارای دامنه انجماد بلند به چشم می خورد.در این آلیاژها حد فاصل هندسی مشخصی بین مایع وجامد وجود ندارد وکسری های ناشی از انقباض به طور پراکنده در سراسر قطعه پخش شده وفقط قسمتی از آن در مناطق ضخیم وانتهایی به صورت متمرکز باقی می ماند.

2-2- حفره های گازی[8]:
عموما گازها در فلزات مذاب نسبت به حالت جامد دارای حلالیت بیشتری هستند.بنابراین در حین انجماد گاز حل شده به صورت فوق اشباع در مذاب در آمده ودر صورت وجود جوانه مناسب برای ایجاد تخلخل در مذاب وجود نداشته باشد این گازبه صورت فوق اشباع در ساختار جامد باقی خواهد ماند.
حلالیت هیدروژن در مذاب آلیاژهای آلومینیوم cc/100gr69/. ودرجامد درحدود cc/100gr 03/0 می باشد.از طرفی سرعت نفوذ آن در مذاب آلومینیوم نیز بالاست.از این روتقریبا تنها گازی است که در بوجود آمدن حفره های گازی در آلومینیوم موثر است.
مدل تئوريكي تشكيل حباب هاي گازي به صورت زير مي باشد[6]:
1- هسته هاي جامد درداخل مذاب تشكيل مي شود.
2- رشد شاخه اي بر روي هسته ها آغاز و ادامه مي يابد.
3- مذاب محصور در داخل دانه هاي رشد يافته از عناصر محلولي وهمچنين مقدار گاز غني شده وبعد از مدتي حباب هاي گازي تشكيل مي شوند.
4- در مراحل پاياني انجماد و هنگامي كه حجم مايع كاهش يافته وغلظت ملكولي گاز افزايش مي يابد.شرايط براي تشكيل حباب هائي بين بازوهاي دندريت فراهم مي شود.

مکانیزم رسوب:
بدون توجه به مسئله تغذيه كردن،تشكيل تخلخل به توزيع هيدروژن در طول انجماد آلومينيوم مربوط مي شود. به خوبي شناخته شده است كه تشكيل حفره درآلياژهايآلومينيوم به وسيله نفوذ هيدروژن از زمينه جامد شده به داخل حفره بوجود مي آيد ،كه در حقيقت از طرفي شبيه به رسوب فاز ثانويه در زمينه محلول فوق اشباع مي باشد.تقريبا يك تعداد كمي از مقاله ها به اين مسئله با مكانيزم جوانه زني ورشد پرداخته اند. تعدادي از محققان با پديده هاي رياضي به اين موضوع پرداخته اند.وانگ و سيگوارد اين مسئله را با مدل هاي ترموديناميكي حل كردند.

3- اندازه تخلخل:
3-1- اثر ضخامت قطعه بر اندازه تخلخل:
اندازه حفرات با تغيير ضخامت تغيير مي كند.هر چه ضخامت كمتر مي شود اندازه حفرات كوچكتر مي شود.دليل آن اين است كه با افزايش سرعت سرد شدن كه با كاهش ضخامت رابطه مستقيم دارد اندازه دندريت ها كوچك تر مي شود.با كوچك شدن فضاهاي بين دندريتي حباب ها در فضاي كمتري رشد مي كنند.در نتيجه اندازه آنها كوچكتر مي شود.
سرعت رشد ودرشت شدن حباب هاي گازي عملا با سرعت انجماد رابطه معكوس دارد.با افزايش سرعت انجماد وايجاد دانه هاي ريز وهمگن موانعي براي درشت شدن حباب هاي گازي حاصل شده وفقط ريز مك هايي در بين بازو هاي شاخه هاي جامد ممكن است تشكيل مي شوند.بطور كلي با افزايش سرعت انجماد امكان جوانه زني و رشد مستقل حباب ها در بين دانه ها كاهش مي يابد.]6[
3-2- تعداد جوانه:
يكي از عواملي كه باعث ريز شدن دانه ها مي شود تعداد جوانه بيشتر است.در حقيقت وقتي كه تعداد جوانه در ذوب كم باشد دانه هائي كه شروع به رشد مي كنند در زمان ديرتري به يكديگر برخورد مي كنند.پس در اين زمان حباب فرصت بيشتري پيدا مي كند تا اندازه اش بزرگتر شود.يعني اينكه آن مقدار هيدروژني كه به صورت اتمي در ذوب حل شده است فرصت بيشتري پيدا مي كند تا به صورت مولكولي(حباب)در بيايد وهر چه زمان بيشتر باشد به اندازه حباب افزوده مي شود.

شکل 1-اثر اندازه دانه بر مقدارتخلخل[6]

 مواد

3-3- عمليات بهسازي:

افزودن استرانسيم بمنظور اصلاح ساختار سيليسيم يوتكتيكي از حالت درشت وسوزني به حالت ظريف ورشته اي شكل،هم اكنون بعنوان يك فرايند مهم در ذوب آليا‍‍ژهاي آلومينيوم- سيليسيم مورد استفاده قرار مي گيرد.يكي از اثرات جانبي عمليات بهسازي با استرانسيم،افزايش تخلخل در قطعات ريختگي است.عمليات بهسازي با سديم،استرانسيم وكلسيم سبب افزايش نسبتا شديد تعداد وابعاد تخلخل هاي ريز وپراكنده در قطعات ريخته گري مي شوند. همچنين بر اساس تحقيقات به عمل آمده اثرات عمليات بهسازي با سديم وكلسيم به مراتب بيشتر از عمليات بهسازي با استرانسيم است. البته از آنجائي كه در اثر عمليات بهسازي اغلب تخلخل هاي انقباضي درشت توسط ريز مك هاي گازي جايگرين مي گردند،يك جنبه مثبت اين پديده كاهش نياز به تغذيه است.]5[
در ذوبي كه عمليات بهسازي انجام شده است قبل از اينكه دندريت ها بوجود آيند حباب هاي بزرگي در ذوب وجود دارد. در ابتداي امردندريت ها زده مي شوند.بعد از اين مرحله فاز يوتكتيك مي خواهد رسوب كند.براي رسوب فاز يوتكتيك بايد يك سطح زيرين براي رسوب وجود داشته باشد.به همين دليل فصل مشترك حباب- مايع محل خوبي براي رسوب فاز يوتكتيك مي باشد.پس فاز يوتكتيك به صورت شعاعي اطراف حباب رشد مي كند.حباب در ميان سلول يوتكتيك مخفي مي شود وشكل واندازه اش به همان صورت اوليه باقي مي ماند]2.[.مي توان گفت كه علت بزرگي حفرات در آلياژهاي آلومينيوم بهسازي شده وجود اين حباب ها در قبل از بوجود آمدن دندريت ها مي باشد.در آلياژهاي بهسازي شده اندازه حفرات كمتر تابع شكل واندازه فضا هاي بين دندريتي است.

4- شكل تخلخل:
4-1- تاثير عمليات بهسازي بر شكل تخلخل :
عمليات بهسازي سبب تبديل ساختار سوزني شكل فاز سيليسيم يوتكتيكي به حالت رشته اي شكل وظريف مي گردد.شكل تخلخل هاي ريز وپراكنده در آلياژهاي بهسازي نشده تابع شكل واندازه فضاهاي بين دندريتي است.در اين شرايط تخلخل ها عمدتا حالت كشيده ونازكي دارند.(شكل 2)از طرفي تخلخل در آلياژهاي بهسازي شده عمدتا درشت تر وكروي تر بوده(شكل 3)ومورفولوژي آنها كمتر تابع شكل واندازه فضاهاي بين دندريتي است.علت اين امر در قسمت اندازه تخلخل توضيح داده شد(4)

 مواد

در آلياژهاي بهسازي نشده بيشتر حباب ها در دامنه انجماد بوجود مي آيند.با رشد دندريت ها سطح اين حباب ها به سطح دندريت ها برخورد مي كنند وشكل دندريت ها را به خود مي گيرند.به اين گونه مك ها مك هاي بين دندريتي مي گويند كه شكل بي قاعده دارند.پس در آلياژهاي بهسازي نشده مك هاي با شكل بي قاعده يا بين دندريتي وجود دارد ودر آلياژهاي بهسازي شده مك هاي بزرگ كروي شكل همراه با تعداد كمي مك هاي بين دندريتي وجود دارد.]2[
نوع ديگري از شكل تخلخل وجود دارد كه به صورت سوزني شكل مي باشد. بوجود آمدن اين نوع تخلخل بستگي به سرعت انجماد دارد.اگر سرعت انجماد به حدي باشد كه جبهه انجماد به حباب برخورد كرده و مجرائي به شكل حباب در يك امتداد بوجود آورد در نهايت يك فضاي خالي به شكل يك سوزن خواهيم داشت.

5- توزيع حفرات:
5-1- پراكنده در همه جاي قطعه(يكنواخت):
اين حالت در مواقعي بوجود مي آيد كه انجماد خميري باشد.وقتي كه انجماد از همه جا شروع مي شود دندريت ها در همه جا زده مي شوند وحباب هاي گازي در بين دندريت ها احاطه مي شوند ودر نهايت به صورت ريز مك هاي گازي در كل قطعه به صورت پراكنده باقي مي مانند.
حالت ديگر اين است كه مذابي كه در بين دندريت ها وجود دارد داراي انقباض مي باشد.چون دندريت ها در همه جا بوجود آمده اند مانع تغذيه شده مذاب بين دندريتي مي شوند.در نهايت ريز مك هاي انقباضي در سراسر قطعه باقي خواهد ماند.
يا مي توان گفت كه اگر انجماد به طوري باشد كه تمام دانه ها به صورت هم محور با شد حفرات گازي وانقباضي به صورت پراكنده درهمه قطعه ديده بشوند.

5-2- متمركز بودن در وسط قطعه(مركزي):
حفره انقباضی متمرکز معمولا در آلیاژهای دامنه انجماد کوتاه مشاهده می شود.در این حالت از آنجائیکه جبهه انجماد همواره برقرار بوده وتفکیک اصولی بین مناطق جامدومایع امکانپذیر است کسری های ناشی از انقباض برای قسمت های جامد توسط مذاب مقابل فصل مشترک تامین می شود وانقباض در مناطق گرم متمرکز می گردد.
اين نوع توزيع حفره در حالتي بوجود مي آيد كه انجماد در ابتدا تا حدي به صورت ستوني پيش رفته باشد.سپس به علت وجود ناخالصي هاي موجود در ذوب باقي مانده يا كاهش شيب دمايي در مركز قطعه دانه ها به صورت هم محور رشد مي كنند.در ابتدا كه دانه ها به صورت ستوني رشد مي كنند در حين رشد حباب هاي گازي موجود درذوب را به طرف جلو مي رانند. همچنين انقباض موجود درذوب باقي مانده متمركز مي شود.در نهايت كه دانه هاي هم محور در وسط قطعه ايجاد مي شوند اين حباب ها در بين دانه ها گير مي افتند.امكان ديگري كه وجود دارد اينست كه چون جبهه انجماد به سمت وسط قطعه است در نهايت مذابي كه باقي مي ماند داراي انقباض مي باشد كه باعث ايجاد حفرات انقباضي در مركز قطعه مي شود.

5-3- محيطي:
اين حالت دليلش اين مي تواند باشد كه ما از مبرد داخلي در مركز قطعه استفاده كنيم.در اين حالت انجماد از مركز قطعه واز اطراف قطعه شروع بشود كه در نهايت حلقه اي از مذاب را در محيط قطعه خواهيم داشت و حفرات گازي در اين مذاب باقي مانده تجمع پيدا كرده اند.در نهايت حلقه اي از حفرات گازي وانقباضي در محيط قطعه خواهيم داشت.البته قابل ذكر است كه استفاده از كلمه حلقه اينست كه ما قطعه فرضي خود را يك استوانه در نظر گرفته ايم.

6- مقدار تخلخل:
6-1- بررسي اثر نوع قالب وشرايط انجماد[4]:
درآزمايشات دکتر مير اسماعيلي تخلخل هاي نسبتا درشت در نمونه بدون تغذيه براي آلياژ 319 مشاهده شده است،در حاليكه در نمونه تغذيه دار تخلخلها عمدتا به تغذيه منتقل شده اند وخود قطعه عاري از تخلخل است.بر خلاف قطعات منجمد شده توسط قالب تغذيه دار كه عميلات بهسازي سبب افزايش قابل توجه تخلخل شده است،اين عمليات سبب كاهش جزئي تخلخل در قطعات منجمد شده توسط قالب بدون تغذيه گرديده است.در قطعات منجمد شده در قالب تغذيه دار،افزايش استرانسيم به مذاب سبب افزايش تخلخل شده است واين افزايش در صورت استفاده از مقادير بيشتر استرانسيم شديدتر است.از طرفي در قطعات منجمد شده توسط قالب بدون تغذيه،افزايش استرانسيم تاثير قابل ملاحظه اي بر تخلخل نداشته است.در كل مي توان اينگونه نتيجه گيري كرد كه اگر براي انجام عمليات بهسازي با استرانسيم از يك سيستم تغذيه گذاري نا مناسب استفاده كنيم قطعه ما داراي تخلخل كمتري خواهد بود.
در يك نگاه كلي مي توان نتيجه گيري كرد كه بهسازي با استرانسيم در نمونه هاي ريخته شده در قالب تغذيه دار با افزايش تعداد وابعاد تخلخل ها سبب افزايش مقدار كلي تخلخل گرديده است.
عمليات بهسازي سبب افزايش تخلخل در نمونه هاي حاوي تخلخل هاي انقباضي نمي شود.در توضيح اين پديده مي توان عنوان كرد كه عمليات بهسازي چه درقطعات عاري از مكهاي انقباضي وچه در قطعات حاوي مكهاي انقباضي سبب افزايش تخلخل هاي گازي مي گردد.تشكيل اين تخلخل هاي گازي د رقطعات عاري از مك هاي انقباضي سبب افزايش تخلخل در قطعه مي شوند،در حاليكه در قطعات حاوي مكهاي انقباضي،تخلخل هاي گازي ايجاد شده در اثرعميلات بهسازي جايگزين مكهاي انقباضي موجود گرديده وبنابراين عمليات بهسازي تاثير قابل توجهي بر مقدار كلي تخلخل نمي گذارد.در واقع در شرايطي كه شرايط براي تشكيل مكهاي انقباضي وهم گازي فراهم است،هيدروژن محلول در مذاب آلومينيوم مي تواند در خلال انجماد بدون هيچ مشكلي در مك هاي انقباضي تشكيل شده رسوب كند وبدين سان تلفيقي از مك هاي گازي وانقباضي بوجود مي آيد.

6-2- اثر افزايش درجه حرارت بر ميزان حلاليت هيدروژن[9]:
با افزايش درجه حرارت جنب وجوش اتم ها زياد مي شود وفواصل بين اتم هاي آلومينيوم زياد مي شود.به همين دليل هيدروژن به راحتي وارد آلومينيوم مي شود.پس هر چه درجه حرارت افزايش يابد ميزان هيدروژن موجود در آلومينيوم افزايش مي يابد.
در شكل اثر افزايش درجه حرارت بر ميزان حلاليت هيدروژن را مي توان ديد.
 

 

6-3- اثرات متقابل مقدار هيدروژن مذاب وعمليات بهسازي برمقدار تخلخل:
تخلخل هاي حاصل ازعمليات بهسازي منشا گازي دارند.استرانسيم فقط در صورت وجود هيدروژن كافي قادر به افزايش قابل ملاحظه تخلخل است، پس اثر استرانسيم بر افزايش تخلخل در شرايطي كه هيدروژن مذاب بيشتر باشد شديدتر است.از اينرو مي توان نتيجه گيري كرد كه تخلخل هاي حاصل از عمليات بهسازي با استرانسيم منشا گازي دارند،بنابراين كاهش هيدروژن مذاب مي تواند تا حد زيادي اثر عمليات بهسازي برتخلخل را خنثي كند. افزايش ابعاد وتعداد تخلخل ها وهمچنين تغيير مورفولوژي آنها از حالت كشيده وترك مانند به حالت كروي شكل در اثر افزايش هيدرو‍ژن بوضوح قابل تشخيص است.(شكل5)

 

6-4- اثرات متقابل عملیات بهسازی با استرانسیم سرعت انجماد وعملیات فیلتر کردن[4]:
بررسي هاي بعمل آمده بيانگر اين است كه عمليات آخال زدائي وافزايش تميزي مذاب سبب كاهش اثرات عمليات بهسازي بر افزايش تخلخل مي گردد.Iwahori وSerratos در آزمايشات خود نشان دادند كه انجام عمليات فلاكس زني پس از عمليات بهسازي با استرانسيم سبب كاهش قابل توجه تخلخل در آلياژA356 گرديده است.شكل6اثرات متقابل عمليات بهسازي با استرانسيم فيلتر كردن مذاب وسرعت سرد شدن را بر مقدار تخلخل در آلياژA356 نشان مي دهد.
 

 

شکل 6 – اثرات متقابل عملیات بهسازی با استرانسیم وفیلتر کردن وسرعت سرد کردن بر مقدار تخلخل در آلیاژA356

همانطور كه ملاحظه مي گردد گرچه افزايش سرعت انجماد سبب كاهش تخلخل در تمام شرايط گرديده است ولي اثر سرعت انجماد در شرايط بهسازي شده با استرانسيم بر كاهش تخلخل بمراتب بيشتر است.
به بيان ديگر در شرايطي كه در نمونه هاي نزديك به تغذيه كه داراي سرعت انجماد كمتري هستند عمليات بهسازي سبب افزايش نسبتا شديد تخلخل شده است اثر اين عمليات در نمونه هاي مجاور مبرد كه داراي سرعت انجماد زيادتري هستند قابل ملاحظه نمي باشد.همچنين نتايج بدست آمده بيانگر اثرات شديد استفاده از فيلتر در سيستم راهگاهي بر كاهش تخلخل در قطعات بهسازي شده با استرانسيم است.
در واقع حضور فيلتر در سيستم راهگاهي با كاهش فيلم هاي اكسيدي وبا تميز كردن مذاب درون قالب سبب كاهش نسبتا شديد تخلخل در آلياژ بهسازي شده با استرانسيم گرديده است.اين نتايج از آن نظر حائز اهميت است كه در آلياژهاي بهسازي شده با استرانسيم نمي توان از عمليات فلاكس زني بمنظور افزايش تميزي مذاب استفاده كرد(عمليات فلاكس زني سبب استرانسيم زدائي از مذاب مي شود).

6-5- اثر اندازه تغذیه بر مقدار تخلخل[1]:
در اين آزمايش آلياژ A206(Al-4.5%Cu-0.4%Mn-0.3%Mg-0.2%Ti)استفاده شده است.عرض،طول وضخامت قطعات به ترتيب 14،20و1سانتي مترمي باشد.سه قطعه با سه نوع قطر تغذيه متفاوت 3،4و6سانتي متري استفاده شدوارتفاع تغذيه ها 5/1برابر قطر تغذيه ها ميباشد.قالب هاي ماسه اي CO2 با استفاده از ماسه سيليسي وهفت درصد وزني سيليكات سديم به عنوان سخت كننده،آماده شد ودرانتهاي قالب يك مبرد مسي قرار داده شده است.قالب ها به مدت 8ساعت در دماي پخته شده وتا دماي محيط قبل از ريخته گري سرد مي شوند.
فرايند ذوب در كوره الكتريكي مقاومتي انجام شده وشمشA206به طور مستقيم در يك بوته گرافيتي اضافه شد.در حين ذوب شدن،غلظت هيدروژن اوليه ذوب در حدود كنترل مي شود.دماي ريختن در حدود كنترل مي شود.ترموكوبل ها در قالب قرار داده مي شوند تا حرارت موجود در 9مكان قطعه نشان داده شده در شكل بدست آيد.براي اندازه گيري وزن مخصوص از روش ارشميدس استفاده مي شود.
 

 مواد

شکل 7-شماتیک قطعه[1]

توزيع تخلخل در درصد حجمي از انتهاي مبرد تا انتهاي تغذيه در قطعات،در شكل 8 نشان داده شده است.در اين شكل،با افزايش اندازه تغذيه مقدار تخلخل كاهش پيدا كرده است.درهمه نمونه ها،حداقل تخلخل را در نزديكي مبرد داريم،تا فاصله كمي از تغذيه به تدريج اين مقدار تا يك ماكزيمم افزايش پيدا مي كند.

 

6-6- تئوري Ham براي محاسبه مقدار تخلخل[1]:
كسر رسوب هيدروژن (f)وزمان واكنش يا به عبارتي زمان انجماد(tf) به صورت زير نشان داده شده است:
معادله 1
كه مقدار هيدروژن اوليه( )، مقدار هيدروژن نفوذ كرده در داخل حفره در يك محل معين ( )، هيدروژن قابل حل در آلومينيوم جامد( )، زمان آسايش(sec)وn يك مقدار ثابت است. قياسي از چگونگي نفوذ هيدروژن مي باشد. مقدار كسر تشكيل تخلخل در يك محل معين آلياژ ريختگي آلومينيوم A356(VP(%))را مي توان به صورت زير تشريح كرد:
معادله 2

كه Pg فشار حباب گازي(atm)و يك مقدار ثابت مي باشد. Pg تركيبي از فشار اتمسفر وفشار هيدرواستاتيكي تغذيه،كاهش فشار مذاب بين دندريتي و فشار تنش سطحي حباب گازي مي باشد.k بايد معادل با باشد( دانسيته مايع( ))،TEدماي يوتكتيك(كلوين) ،273حالت استاندارد دما مي باشد.پس معادله(2) را مي توان به صورت زير نشان داد:
معادله 3

كه برابر با است.درمعادله (3)اگر فرض کنیم که به بینهایت میل کند یعنی كه همه هيدروژن داخل حفره نفوذ كرده وكسر هيدروژن رسوب كرده در يك محل معين در قطعه ريختگي (f) برابر با يك خواهد بود.به اين دليل ،ماكزيمم تخلخلي است كه مي تواند در قطعه ريختگي تشكيل شود.راههاي مشابه ديگري براي پيش بيني مقدار ماكزيمم تخلخل وجود دارد مانند معادلات ترموديناميكي.
 

 مواد

نتيجه زمان انجماد به صورت نمودار در شكل 9 نشان داده شده است.اين منحني ظاهرا تئوري هام را اثبات مي كند.با افزايش زمان تا يك حدي شيب منحني كاهش مي يابد كه ممكن است دليل آن،كم شدن نفوذ هيدروژن محلول در داخل حباب باشد. فشار حباب گازي مي تواند به صورت روبه روباشد: كه درآن تنش سطحي حباب گازي در نظر گرفته شده است.در عبارت قبلي تنش سطحي مذاب آلياژ A206( )،C يك مقدار ثابت است( ).بر طبق اين توصيف،فشار حباب گاز به ترتيب براي مبرد وتغذيه براي زمان هاي انجماد متفاوت،28/1و17/1محاسبه شده است.

7- محاسبه فاكتور شكل[3]:
در مقاله]3[ محاسبه فاكتور شكل به صورت زير مي باشد:

كه در آن Aسطح حفره وPمحيط حفره مي باشد.حفرات بزرگتر داراي فاكتور شكل كمتري مي باشند.همچنين در نمونه هاي بهسازي شده با استرانسيم با افزايش ضخامت فاكتور شكل كاهش يافته است.
با توجه به مطالب بالا مي توان اينگونه استنباط كرد كه حفرات كروي در مقاطع نازك تر مي باشند زيرا با كاهش ضخامت فاكتور شكل افزايش مي يابد.بيشترين فاكتور شكل را دايره دارد كه يك مي باشد.
 

 مواد

8- تاثير سرعت سرد كردن بر مقدارواندازه وشكل تخلخل هادر آلياژ356 [2]
روش آزمايش:
هشت ذوب آماده شد:دو ذوب بهسازي نشده ،يكي باSb ريز دانه شده ،دو ذوب با سديم بهسازي شده وسه ذوب با استرانسيم بهسازی شد.
ذوب ها در كوره سوخت گازي با بوته گرافيتي 8 كيلوگرمي وهمچنين با استفاده ازآميژان 356 به عنوان شارژ آماده شد.ريز دانه كردن هر ذوب با 1/0%تيتانيم به صورت آميژانAl-Ti-B(5:1)انجام شد.در اين عمليات ها ،سديم به صورت فلزي(1/0%) ،استرانسيم به صورت آميژان(Al-Sr10%) و25/0% آنتيموان به صورت فلزي اضافه شده اند.زمان انحلال براي آنتيموان واسترانسيم 20دقيقه مي باشد.بعد از عمليات ذوب ،مقدار هيدروژن بايد در حدود كنترل شود.همچنين از تجهيزات (Telegas)تكنيك گردشي گاز و((Alscan استفاده شد.نياز هست كه براي گاززدائي از نيتروژن باخلوص بالا استفاده شود.
هرذوب در دماي در پنج فنجان فلزي با ديواره نازك ريخته كه نمونه هاي با وزن 200gr توليدوبعدا بريده شدند..
درجه حرارت هائي كه براي كوئنچ انتخاب شده اند٬با توجه به آناليز هاي حرارتي آميژان بدست آمده اند:درجه حرارت ليكوئيدوس ٬درجه حرارت يوتكتيك (بهسازي نشده وريز دانه شده با Sb) يا در محدوده 565-570 (بهسازی شده با Na,Sr) .
درجه حرارت نمونه هائي كه در آب كوئنچ شده اند بر طبق رخدادهاي انجماد آلياژ به صورت زير مي باشد:
: اواسط رشد دندريت- قسمت جامد 30%
:انتهاي رشد دندريت- قسمت جامد 50%
شروع انجماد يوتكتيك- قسمت جامد 55%
اواسط انجماد يوتكتيك-قسمت جامد 75%
بعد از انجماد(هوا سرد شده)
براي مشخص كردن دانسيته از روش ارشميدس استفاده شده است..
نتايج وبحث:
تركيبات شيميائي در جدول شماره2نشان داده شده است.
جدول-2: آناليز تركيب شيميائي
 

 مواد

 نتايج دانسيته:
بيشترين دانسيته بدست آمده در هر سري براي نمونه هاي كوئنچ شده از بوده است كه اين مطابق با مقدار ريز تخلخل صفر مي باشدكه با متالوگرافي اثبات مي شود.اين مقدار را به عنوان دانسيته مرجع استفاده مي كنيم.درصد ريز تخلخل هاي محاسبه شده براي نمونه هاي ديگردر جدول3نشان داده شده است.

جدول3:مقدار ريزتخلخل(%)در نمونه هاي كوئنچ شده در حال انجماد براي عمليات هاي گوناگون
جدول 3-1
 

 مواد

جدول3-2

 مواد

مقدار ريز تخلخل بدست آمده براي نمونه هاي در هوا سرد شده ٬تاثير نهائي عمليات بهسازي در تشكيل ريز تخلخل ها را نشان مي دهد.بيشترين مقدار مشاهده براي ذوب بهسازي شده با سديم(Na) و بعد از آن براي ذوب بهسازي شده با استرانسيم(Sr) وبعد از آن براي ذوب بهسازي نشده مي باشد.كمترين مقدار مك ها براي نمونه هاي ريز دانه شده با آنتيموان(Sb) بدست آمده است.اين ترتيب براي نمونه ميله اي ريخته شده در ماسه هم مشاهده مي شود
نتايج آناليزهادر جدول3 نشان داده شده است كه سرعت افزايش مقدار مك ها را بعد از شروع واكنش يوتكتيك براي همه ذوب ها نشان مي دهد. مقدار مك ايجاد شده در طول انجماد يوتكتيك در محدوده  0.7_0.6% مي باشد.
شرايط انجام آزمايش با مقدار هيدروژن از اين قرارمي باشد:
براي ذوب هاي بهسازي نشده ،مقدار جوانه تخلخل در حين رشد دندريت خيلي كوچك مي باشد،بنابراين تقريبا همه تخلخل ها به علت جوانه زني مك ها ورشد در حين واكنش يوتكتيك بوجود مي آيند.
در مورد ذوب هاي بهسازي شده،جوانه زني تخلخل وشروع رشدپائين تر از است كه در شروع واكنش يوتكتيك به مقداري درحدود 48/0% براي نمونه هاي بهسازي شده با سديم(Na) مي رسد. در حين واكنش يوتكتيك ،سرعت رشد، مشابه سرعت رشد ذوب هاي بهسازي نشده مي باشد.
براي ذوب هاي ريز دانه شده با آنتيموان(Sb) ،شروع جوانه زني حباب ها بعد از واكنش يوتكتيك انجام مي شود.همچنين در اين مورد ،سرعت رشد حباب ها مشابه ذوب هاي بهسازي نشده ميباشد.

رويداد انجماد نشان مي دهد كه تشكيل حفره در آلياژ هاي آلومينيوم به این صورت می باشد:
1-براي شروع انجماد در :مقدار انقباض انجماد به وسيله توده مذاب تغذيه كننده وتغذيه بين دندريتي به آساني جبران مي شود(براي همه عمليات ها).
2- از تا شروع واكنش يوتكتيك: در آلياژهاي بهسازي نشده و ريز دانه شده با Sb تحرك مذاب بين دندريتي باندازه كافي از تشكيل مك جلوگيري مي كند.در ذوب هاي بهسازي شده ،تحرك به شدت كاهش مي يابدو مقدارانقباض بوسيله تشكيل حفره جبران مي شود.
3- بطور كلي بعد از واكنش يوتكتيك:نفوذ پذيري بين دندريت ها وبين سلول ها به علت حجم زياد جامد كاهش مي يابد .بعد از آن ،مقدار انقباض انجماد به طور چشمگيري به وسيله تشكيل حفره در همه موارد جبران مي شود.
بر اساس اين ترتيب رخداد ها ،ما مي توانيم بيشترين گرايش تشكيل ريزتخلخل ها را به ذوب هاي بهسازي شده نسبت دهيم به علت اينكه تحرك مايع بين دندريتي كاهش مي يابد كه بين دماهاي و مي باشد.در اين محدوده يك فاز مايعي وجود دارد كه در آن سيلسيم ،منيزيم ،آهن وعناصر بهساز متمركز شده اندوهمچنين فاز جامد با شبكه دندريتي وجود دارد.عنصر بهساز مي تواندخواص فاز مايع از قبيل ويسكوزيته يا نفوذ پذيري را تغيير بدهدو همچنين بر مورفولوژي دندريتها تاثير بگذارد.

نتايج متالوگرافي:
در نمونه هاي كوئنچ شده،مذاب باقي مانده قبل از كوئنچ با آب وجود دارد ،يك ريز ساختار خيلي ريز دانه شده ايجاد شده است كه به راحتي نسبت به فازهاي كه قبلا جامد شده اند قابل تشخيص مي باشد.
نمونه هاي كوئنچ شده از :
ريز ساختار نمونه هاي كوئنچ شده از مشابه با همه عمليات ها مي باشد.اين ريز ساختار a-دندريت ها ومايع سريع سرد شده.اين نمونه ها هيچ گونه تخلخلي را نشان نمي دهند.
نمونه هاي كوئنچ شده :
نمونه هاي كوئنچ شده از همانند نمونه هاي كوئنچ شده از مي باشند،بجزوجودa-دندريت هاي بزرگ(در حدود 50%) وعدم وجود a-دندريت هاي خيلي كوچك در داخل منطقه يوتكتيك.
در نمونه هاي ريز دانه شده با آنتيموان تخلخلي ديده نمي شود ولي در نمونه هاي بهسازي نشده تخلخل ها به صورت خيلي ريز وجود دارند.در نمونه هاي بهسازي شده با استرانسيم وسديم تخلخل هاي بزرگ كروي ديده مي شود.
حفراتي كه در بين دندريت ها زده مي شوند مورفولوژي آن ها تا ايجاد يك شكل نا منظم تغيير مي كند(بين دندريتي)
اين موضوع براي حفرات در حال رشد ودر تماس با جامد مي باشد(a-دندريت ها).
اما در قسمت مايع بيشتر مي باشد(در حدود 50%) وبه همين دليل تماس پيدا كردن حفره با دندريت ها به ندرت اتفاق مي افتد. همچنين بيشتر حفرات تشكيل شده قبل از واكنش يوتكتيك كروي مي باشند.
نمونه هاي كوئنچ شده در شروع يوتكتيك و اواسط يوتكتيك:
در نمونه هاي ريز دانه شده با آْنتيموان و بهسازي نشده كه در شروع واكنش يوتكتيك كوئنچ شده اند،ساختار كاملا رشد پيدا كرده a-دندريت ديده مي شود و همچنين مقدار زيادي هسته هاي يوتكتيك كوچك با فاز سيليس لايه اي وجود دارد.
در نمونه هاي بهسازي نشده،مقدار زيادي ريز تخلخل كوچك در قسمت مايع وجود دارد.در نمونه هاي ريز دانه شده با آنتيموان ريز تخلخل وجود ندارد.نمونه هاي بهسازي شده با استرانسيم وسديم وكوئنچ شده در شروع واكنش يوتكتيك( )ساختار دندريتي a ،مك هاي بزرگ و يك تعداد كمي هسته هاي يوتكتيك بزرگ را نشان مي دهد.تعداد كم هسته هاي يوتكتيك حاصل واكنش عناصر بهساز مي باشند.
فاز سيليس به علت نياز داشتن به يك لايه زيرين براي رسوب كردن، فصل مشترك حباب /مايع را انتخاب مي كند.قابل توجه است كه فاز سيليس به صورت شعاعي در اطراف حباب رشد مي كند كه هم مركز با هسته يوتكتيك مي باشد. .هسته هاي يوتكتيك جامد شده اطراف حباب هاي كروي ايجاد مي شوند كه اين موضوع وجود حباب هاي كروي را در آلياژ هاي بهسازي شده تثبيت مي كند.
در ادامه انجماد ،مقدار انقباض و سگرگاسيون هيدروژن به جوانه زني حباب هاي جديد كمك مي كند ،در حالي كه حباب هاي از قبل شكل يافته توسط يوتكتيك جامد احاطه شده اند.بيشتر اين حباب هاي جديد بايد شكل نا منظمي داشته باشندزيرا قسمت جامد در حال رشد مي باشد.
در آلياژ هاي بهسازي نشده (يا ريز دانه شده با آنتيموان) ،هسته هاي يوتكتيك شكل نا منظمي دارند. همچنين حباب هاي جديد در حال رشد در تماس با جامد يك شكل نا منظمي پيدا دارند(بين دندريتي).بازو هاي هسته هاي يوتكتيكي به اندازه اي كوچك مي باشند كه حباب ها مي توانند اطراف آنها رشد مي كنند.ممكن است كه حباب ها به صورت تخلخل هاي خوشه اي شكل درتصاوير متالوگرافي ظاهر شوند.
در آلياژ هاي بهسازي شده با استرانسيم وسديم، فصل مشترك هسته هاي يوتكتيك نا منظم مي باشد.دراين مورد ،حفره هاي جديد كه شكل نا منظم دارند ،به طور جزئي مورفولوژي بين دندريتي پيدا مي كنند.به علاوه اينكه ،چون هسته هاي يوتكتيك بزرگ مي باشند ،حباب هاي جديد به سختي مي توانند اطراف آنها رشد كنند.همچني در اين مورد آنها شكل رشته اي ندارند.در نمونه هاي كوئنچ شده از اواسط واكنش يوتكتيك ،ساختار دندريت هاي a ،هسته هاي يوتكتيك ديده مي شود.در نمونه هاي بهسازي نشده(ريز دانه شده با آنتيموان)حفرات نامنظم در حال رشد و خوشه اي شكل وجود دارد(احاطه شده توسط بازوهاي هسته يوتكتيك).
نمونه هاي بهسازي شده داراي حفرات كروي احاطه شده توسط يوتكتيك مي باشند و همچنين حفرات نا منظم در قسمت مايع در حال رشد مي باشند.
نمونه هاي درهوا سرد شده:
ريز ساختار نهائي نمونه ها ،تفاوت ها در اندازه و توزيع حفرات و فاز سيليس يوتكتيك نشان مي دهد.فاز سيليس در نمونه هاي ريز دانه شده با آنتيموان و بهسازي نشده لايه اي مي باشد ،در حالي كه فاز سيليس در آلياژ بهسازي شده رشته اي و بسيار ريزمي باشد.حفرات درآلياژ هاي بهسازي نشده و ريزدانه شده با آنتيموان ،نا منظم و با مورفولوژي بين دندريتي و خوشه اي مي باشند.درآلياژ هاي بهسازي شده دو نوع حفره وجود دارد:يكي كروي وديگري نا منظم(به طور جزئي بين دندريتي).
مقدار حفره شكل يافته بعد از واكنش يوتكتيك براي هر ذوب و همه عمليات ها يكسان مي باشد.درمورد مقدار حفره تشكيل شده قبل از واكنش يوتكتيك ، درآلياژهاي بهسازي شده و بهسازي نشده تفاوت هائي مشاهده مي شود.
بايد تاكيد كرد كه آلياژ هائي كه شامل مقدار هيدروژن بالاتر از باشند ،احتمالا در طول انجماد آنها، رخداد هائي روي مي دهدكه متفاوت با مطالب قبلي خواهد بود.در آلياژ هاي بهسازي نشده با مقدار هيدروژن بالاتر ،حفرات مي توانند زودتر تشكيل شوند كه در نتيجه تعداد زيادتري حفرات كروي ايجاد خواهد شد.
خلاصه مشخصات اصلي ريز ساختار تكامل يافته آلياژ هاي بهسازي نشده ،ريز دانه شده با آنتيموان و بهسازي شده با استرانسيم وسديم در طول انجماد ،در جدول 4 آمده است.بيشترين تفاوت هاي قابل توجه مربوط به تغييرات ريز ساختاري بهسازي شده است كه تعداد هسته هاي يوتكتيك كاهش ،مورفولوژي يوتكتيك/ مايع و قطعا مورفولوژي فاز سيليس تغيير يافته است.
 

 

حباب هاي به وجود آمده در همه عمليات ها در جدول 5 آمده است.در نمونه هاي بهسازي نشده يا درنمونه هاي ريز دانه شده با آنتيموان ،بيشتر حفرات كروي،بعد از شروع واكنش يوتكتيك جوانه مي زنند.در اين حالت ،حفرات به صورت بين دندريتي وسلولي رشد مي كنند.همچنين در اين شرايط ،فصل مشترك هسته هاي كوچك يوتكتيك با مايع نا منظم مي با شد.حفرات رشد كرده فصل مشترك هسته هاي يوتكتيك را احاطه مي كنند و به صورت شاخه اي و يا به صورت نا منظم و خوشه اي شده ديده مي شوند.
در نمونه هاي بهسازي شده با استرانسيم وسديم ،حباب هاي بين دندريتي قبل از انجماد يوتكتيك جوانه مي زنند.بدين ترتيب ،وقتي هسته هاي يوتكتيك شروع به رشد مي كنند ،حباب هاي جديد را احاطه مي كنند و بدين ترتيب مورفولوژي اوليه خود را حفظ مي كنند(كروي شده).ريز تخلخل هاي تشكيل شده بعد از جوانه زني هسته يوتكتيك به صورت دندريتي و سلولي رشد مي كنندكه نا منظم مي باشند.در حالي كه در نمونه هاي بهسازي شده ،هسته هاي يوتكتيك بزرگ مي باشندو حفرات نمي توانند آنها را احاطه كنند ،.همچنين از مكانيزم شاخه اي شدن جلو گيري شده و حفرات نا منظم به صورت خوشه اي مشاهده نمي شوند.بعلاوه اينكه در آلياژ هاي بهسازي شده ،چون فصل مشترك هسته يوتكتيك/ مايع صاف مي باشد ،حباب ها نسبت به آلياژ هاي بهسازي نشده كمتر نا منظم هستند.
 

 

روش آزمايش:
آلیاژ مورد استفاده در این پژوهش آلیاژ آلومینیوم 356 می باشد.بدین منظور برای تهیه این آلیاژ از آلیاژ آلومینیوم 5%سیلیسیم وهمچنین آلومینیوم ومنیزیم خالص استفاده شد.عملیات ذوب در کوره زمینی با سوخت گازوئیلی انجام شد.مواد شارژ جمعا kg7 می شدند که ابتدا آلومینیوم خالص وآلیاژ آلومینیوم 5%سیلیسیم را شارژ وپس از ذوب شدن از کوره خارج شده ومنیزیم به صورت خالص اضافه شد.بر روی ذوب اول هیچ گونه عملیات کیفی انجام نشد.دمای ذوب ريزي حالت گاززدایی نشده 720درجه سانتی گراد در نظر گرفته شد.
پس از ریختن نمونه پله ای اول مجددا ذوب باقی مانده داخل کوره قرار داده شده تا به دمای فوق ذوب لازم برسد.پس از رسیدن به دمای فوق ذوب لازم بوته بیرون آورده شده وگاززدایی انجام گرفت.برای گاززدایی از قرص دگازر استفاده شد.دمای ریختن ذوب گاززدایی شده مابین730-720درجه سانتی گراد بود.شکل وابعاد مدل استفاده شده برای آزمایش در زیر نشان داده شده است.
 

 مواد

نتايج:
در نمونه گاززدايي نشده هيچ گونه مك وحفره مشاهده نشد. همانطور كه از شكل الف پيداست هيچ گونه حفره يا ريز مك ديده نمي شود.
در نمونه گاززدايي شده حفره بزرگي در سطح بيشترين ضخامت قطعه مشاهده مي شود. علت وجود حفره اين مي تواند باشد كه چون قالب مورد استفاده براي ريخته گري نمونه هاي آزمايشي ماسه تر مي باشد احتمال دارد كه رطوبت موجود در ماسه در هنگام تماس با مذاب بخار شده وحفره اي در سطح قطعه بوجود آورده است.
در كل حفره موجود در سطح قطعه گاززدايي شده منشا گازي دارد زيرا در نمونه گاززدايي نشده حفره انقباضي وجود ندارد يعني اينكه سيستم تغذيه گذاري مناسب بوده است وهمچنين دماي بارريزي هر دو نمونه يكسان مي باشد.با اين اوصاف حفره موجود در سطح نمونه گاززدايي شده نمي تواند منشا انقباضي داشته باشد.
 


دسته بندی : متالورژی فیزیکی

منيزيم

اطلاعات کلی

منیزیم ، عنصر شیمیایی است که در جدول تناوبی دارای نشان Mg و عدد اتمی 12 می‌باشد. منیزیم ، هشتمین عنصر فراوان است و تقریبا" 2% پوسته زمین را تشکیل می‌دهد و سومین عنصر فراوان محلول در آب دریا به حساب می‌آید. کاربرد اصلی این فلز قلیایی خاکی ، بعنوان عامل آلیاژ ساز برای ساخت آلیاژ آلومینیم – منیزیم می‌باشد.

خصوصیات قابل توجه

منیزیم ، فلزی سبک ، سفید رنگ و نسبتا" محکم است ( یک‌سوم از آلومینیوم سبکتر ) که در معرض هوا به‌آرامی کدر می‌گردد. پودر این فلز ، هنگامیکه در معرض هوا قرار گیرد، گرم شده ، با شعله‌های سفید رنگی می‌سوزد. اگرچه به شکل نوارهای باریک به‌آسانی محترق می‌شود، سوختن مقادیر زیاد آن دشوار است.

کاربردهــــــا

ترکیبات منیزیم ، بخصوص اکسید منیزیم ، بیشتر بعنوان مواد دیرگداز در کوره‌های تولید آهن و فولاد ، فلزات غیرآهن ، شیشه و سیمان ، مورد استفاده قرار می‌گیرد. اکسید منیزیم و سایر ترکیبات هم در صنایع عمرانی ، شیمیایی و کشاورزی بکار می‌روند. عمده کاربرد منیزیم بصورت یک افزودنی آلیاژساز به آلومینیوم است که از این آلیاژ ، بیشتر در قوطی‌های مواد آشامیدنی استفاده می‌گردد.

همچنین آلیاژهای منیزیم ، اجزای ساختاری اتومبیل‌ها و ماشین‌آلات را تشکیل می‌دهند. کاربرد دیگر این فلز ، کمک به جداسازی
گوگرد از آهن و فولاد است.

سایر کاربردها

  • منیزیم ، مانند آلومینیم ، محکم و سبک است، بنابراین اغلب در چرخهای مرغوب که mag wheels نامیده می‌شوند، بکار می‌رود.

  • آلیاژ این فلز در ساخت هواپیما و موشک ضروری است.

  • منیزیم در صورتیکه بعنوان عامل آلیاژ ساز بکار رود، خصوصیات تولیدی ، مکانیکی و جوش خوردن آلومینیم را ارتقا می‌دهد.

  • عامل افزودنی برای پیشرانهای معمولی و مورد استفاده در تولید گلوله‌های کوچک گرافیت در چدن.

  • عامل کاهنده برای ساخت اورانیوم خالص و فلزات دیگر از نمکهایشان.

  • هیدروکسید آن در شیر منیزی ، کلرید و سولفات آن در سولفات دومنیزی و سیتراتهای آن در پزشکی کاربرد دارند.

  • مگنزیت Dead-burned برای مقاصد دیر گداز از قبیل آجر و آسترهای محافظ در کوره‌ها مورد استفاده است.

مواد


 

  • منیزیم همچنین در دمای 4000 درجه فارینهایت قابل اشتعال و احتراق است.

  • دمای فوق‌العاده زیادی که برای سوزاندن منیزیم نیاز است، این عنصر را تبدیل به ابزاری راحت برای شروع آتشهای ناگهانی هنگام تفریحات سالم در فضای باز می‌کند.

  • پودر کربنات منیزیم ( MgCO3) توسط ورزشکاران رشته‌هایی چون ژیمناستیک و وزنه برداری ، برای افزایش میزان چسبیدن دست به وسایل ( دستگاهها و هالتر ) مورد استفاده قرار می‌گیرد.

  • سایر کاربردها عبارتند از فلاش دوربین عکاسی ، منور بمبهای آتش‌زا.


 

شناخت محیط رشد:منیزیم

منیزیم در تولید کلروفیل به کار می رود و در نتیجه عمل فتوسنتز موثر می باشد. در بذرها، منیزیم به مقدار زیاد یافت می شود. علایم کمبود منیزیم در گیاه زردی بین رگبرگهاست. علایم کمبود ابتدا در برگهای پیر مشاهده می شود. و در صورت کمبود شدید، برگ ها شروع به ریزش می کنند. در خاک منیزیم نسبتاً سریع شسته شده و از دسترس گیاه خارج میگردد. برای رفع کمبود منیزیم از کربنات و سولفات منیزیم استفاده می شود.


دسته بندی : فلزات غیرآهنی

شکست

چکيده
بررسي مکانيزمهاي ايجاد ترک و مکانيزمهاي متفاوت رشد سريع يا در حد بحراني ترک و رشد آرام و پايينتر از رشد بحراني از اهميت ويژه صنعتي برخوردارند. بررسي فعل و انفعالات فيزيکي که به هنگام شکست روي ميدهد چندان ساده نيست، زيرا چگونگي ايجاد ترک و رشد آن و بالاخره نوع شکست در مواد کريستالي به جنس، ساختار شبکه کريستالي، ريزساختار و از آنجا که قطعات معمولا به طور کامل سالم و بدون عيب نيستند به نوع، اندازه و موقعيت عيب، نوع و حالت تنش وارد بر آنها بستگي خواهد داشت. معمولا شکست در فلزات به شکست نرم و شکست ترد تقسيم مي شود.
در صنعت هدف، کنترل و به تعويق انداختن شکست است.

Fracture
Author: Alireza sanjari
Office: Home

Abstract
Mechanisms of crack creating and different mechanisms of quick growth of crack or in the critical limit of crack and lower than limit of is much of importance.
Extinguishing physical reactions which happen during facture, is more complex due to the creation of crack it is growth and at last the type of facture crystalline material is dependent on crystal latice structure , microstructure.
According to the fact that usually specimens are not perfect and are defective , they are dependent on location , type and size of defects and stress conditions.
Usually fracture in metals is classified into 2 categories: brittle & ductile.
In industry, our aim is to prevent and prolong fracture

. شکست نرم:

بسياري از فلزات و آلياژهاي آنها، به ويژه آنهايي که داراي شبکه fcc هستند، مانند آلومينيوم و آلياژهاي آن، در تمام درجه حرارتها، شکست نرم خواهند داشت. شکست نرم به آرامي و پس از تغيير شکل پلاستيکي زياد به ازاي تنشي بالاتر از استحکام کششي ظاهر ميشود. از مشخصات شکست نرم، تحت تاثير تنش کششي، ظاهر گشتن گلويي يا نازکي موضعي و ايجاد حفره هاي بسيار ريز در درون قسمت گلويي و اتصال آنها به يکديگر تا رسيدن به حد يک ترک ريز و رشد آرام ترک تا حد پارگي يا شکست نهايي است.

 

 مواد

مراحل مختلف شكست نرم در يك فلز انعطاف پذير

 در اين نوع شکست علت ايجاد حفرهاي ريز در محدوده گلويي ميتواند تغيير شکل غير يکنواخت ناشي از ناخالصيهاي موجود در ماده اصلي زمينه باشد. لذا با ايجاد حفره هاي بسيار ريز در محدوده گلويي حالت تنش سه محوري برقرار ميشود که منجر به ايجاد ترک ميشود .

 در طراحي و ساخت اجزاي ماشين آلات و در ساختمان سازي، تنشهاي وارد بر سازه هاي  فلزي در محدوده الاستيکي انتخاب ميشود. بنابراين در کاربرد صنعتي، شکست در حالت تنش استاتيکي در مواد انعطاف پذير ( داکتيل ) يک پيشامد نامطلوب است.

 
 ترك داخلي در نا حيه نازك شده در نمونه كششي مس با خلوص بالا

شکست ترد:

شکست ترد معمولا در فلزاتي با ساختار کريستالي مکعب مرکزدار(bcc ) و هگزاگونال متراکم (hcp) و آلياژهاي آنها در درجه حرارتهاي پايين ( معمولا پايينتر از دماي معمولي محيط ) و سرعتهاي تغيير شکل بالا بطور ناگهاني ظاهر ميشود. شکست ترد در امتداد صفحه کريستالي معيني، به نام صفحه کليواژ، انجام ميگيرد. در شکست ترد عموما تغيير شکل پلاستيکي قابل توجهي در منطقه شکست مشاهده نميشود.
نظريه شکست ابتدا علت شکست را اين چنين بيان کرد که تمام پيوندهاي اتمي در امتداد صفحه شکست هم زمان با هم گسيخته ميشوند. بدين ترتيب که با ازدياد تنش فاصله اتمها از يکديگر دور ميشوند ودر نهايت به محض اينکه تنش به حد تنش شکست ( تنش بحراني ) رسيد، در نتيجه گسستن تمامي پيوندهاي اتمي در صفحه عمود بر امتداد کشش، شکست پديدار ميشود.
در جدول زير تنشهاي بحراني عمود بر صفحات کريستالي معين در چند تک کريستال براي شکست داده شده است.
 

شكست ترد وتعدادي از تك كريستالها

 

 عملا تنش لازم براي شکست مواد لازم فلزي به اندازه قابل توجهي کمتراز تنش شکست محا سبه شده ا ز طريق تئوري است . بنابراين فعل وانفعال شکست نميتواند از طريق گسستن همزمان تمامي پيوند هاي اتمي درامتداد سطح شکست صورت گيرد. بد ين ترتيب فعل و انفعالات شکست عملا بيشتر از طريق ايجاد يک ترک بسيار ريز به عنوان منشا ترک و رشد و پيشروي آن انجام ميگيرد . براي پيشروي ترک د ر يک ماده لازم است مقدار تنش متمرکز در نوک ترک از استحکام کششي در آن موضع فراتر رود . د ر مواردي که شرايط براي پيشروي منشا ترک مساعد نيست ترک مي تواند متوقف گشته وشکست پديدار نشود.

 تئوري گريفيت:

 او چنين بيان مي کند که در ماده اي که حاوي تعدادي ترک بسيار ريز باطول معيني است ، همين که مقدار تنش متمرکز درنوک ترک ، حداقل به مقدار تنش لازم براي گسستن پيوندهاي اتمي د رآن موضع ( استحکام کششي ) رسيد، شکست ظاهر ميشود . باپيشرفت ترک ، سطح ترک افزايش مي يابد . اين مطلب بدين معني است که براي ايجاد اين سطح بايد انرژي  به کار برده شود . اين مقدار انرژي از انرژي تغيير شکل کسب مي شود.

 بنابراين فرضيه گريفيت علت پديدار گشتن شکست ترد را وجود ترکها و خراشهاي سطحي بسيار ريز ( با اندازه بحراني) و پائين بودن استحکام را د رآن مواضع مي داند . اماموادب هم وجود دارد که بد ون داشتن ترکهاي سطحي بسيار ريز شکست ترد د ر آنها پديدار مي شود . بنابراين د ر اين گونه مواد هم بايد فعل وانفعالاتي صورت گيرد که موجب به وجود آمدن تمرکز تنش وفراتر رفتن موضعي  مقدارتنش از استحکام کششي ود رنتيجه ايجاد منشا ترک شود. زنر و اشترو مکانيزم اين فعل و انفعال راچنين بيان داشتند که در حين تغيير شکل پلا ستيکي نابجاييها در پشت موانع ( مانند مرزدانه ها ومرز مشترک  د و قلوييها ) تجمع يافته وبدين ترتيب در زير نيم صفحه هاي مربوط به اين نابجاييها ترکهاي بسيار ريزي ايجاد مي شود .

اين ترکهاي بسيار ريزهمچنين مي تواند محلهاي مناسبي براي نفوذ عناصري مانند اکسيژن ، ازت وکربن درآنها وايجاد فازهاي ثانوي ترد ودر نتيجه شکست ترد باشند. چنين رفتار ترد د ر شکست ترد مس باوجود عناصري مانند آنتيموان وآهن همراه بااکسيژن مشاهده شده است .

 مواد
مكانيزم ايجاد ترك از طريق نابجاييها . الف) تجمع نابجائيها در پشت مرز دانه ها (Zener)
ب) تلاقي نابجائيها (Cottrell)

کاترل مکانيزم د ومي رابراي ايجاد منشا ترک ارائه کرد. بد ين صورت که منشا ترکهاي ريز مي تواند د ر اثر تلا قي د و صفحه لغزش بايکد يگر ، د ر نتيجه د ر هم آميختن نابجاييها د ر محل تلا قي آن د و صفحه و ايجاد نابجاييها ي جد يد ، ناشي شود، اين مکانيز م مي تواند د ليلي براي ايجاد سطح شکست ( صفحه کليواژ ) مشاهده
شده د ر صفحه (001 ) د ر فلزات باساختار کريستالي مکعب مرکزدار (bcc ) باشد.
درفلزات چندين کريستالي شکست تر د ميتواند به صورت برون دانه اي ( بين دانه اي) و يا درون دانه اي باشد.
شکست برون دانه اي در بين دانه ها د ر امتداد مرز دانه ها ظاهر مي شود. د ليل اين نوع شکست بيشتر ميتواند وجود ناخالصيها يا جدايش و رسوب عناصر يا فازهاي ترد و شکننده د ر امتداد مرز دانه ها باشد. شکست ترد درفلزات بيشتر به صورت درون دانه اي است . بدين ترتيب که ترک د ر داخل دانه ها گسترش مي يابد. د رجه حرارت و سرعت تغيير شکل تاثير مخالفي برروي نوع شکست خواهد داشت ، به طوري که باکاهش درجه حرارت و ازد ياد سرعت تغيير شکل ، تمايل براي شکست ترد به صورت درون دانه اي د ر حين خزش د ر نتيجه تغييرات شيميائي دراثر اکسيداسيون ممکن خواهد بود. چنانچه اکسيداسيون برون دانه اي در فلزات صورت گيرد، تنش شکست بسيار کاهش مي يابد.

 تافنس شکست:
چنانچه در جسمي ترک وجود داشته باشد، د راين صورت استحکام آن جسم استحکامي نيست که از طريق آزمايش کشش به دست مي آيد ، بلکه آن کمتر است. د راين صورت مسئله ترک واشاعه آن اهميت پيدا مي کند. در اينجا تافنس شکست به رفتار مکانيکي اجسام ، شامل ترک ياد يگر عيوب بسيار ريز سطحي ياداخلي مربوط ميشود. البته م يتوان اذعان کرد که عموما تمام اجسام عاري از عيب نبوده و شامل عيوبي هستند . دراين صورت آن چه که د رطراحي و اتنخاب مواد براي ما اهميت صنعتي ويژه اي دارد ، مشخص کردن حد اکثر تش قابل تحمل براي جسمي است که شامل عيبي با شکل و اندازه معيني است . بنابراين به کمک تافنس شکست مي توان توانايي جسمي که بطور کامل سالم نيست راد رمقابل يک بار خارجي وارد برجسم سنجيد.
معمولابراي تعيين تافنس شکست از آزمايش کشش برروي نمونه آماده شده اي از جنس معين که ترکي بطول وشکل معيني برطبق استاندارد درسطح ياداخل نمونه بطورعمد ايجاد شده استفاده مي شود، شکل نمونه به گونه اي د ر دستگاه آزمايش کشش قرار مي گيرد که ترک ريز به صورت عمود برامتداد تنش کششي قرار گيرد.
 

 مواد

اکنون اين سئوال مطرح مي شود که به ازاي چه مقداري از تنش s جوانه ترک مصنوعي د ر داخل جسم گسترش مي يابد تاحدي که منجر به شکست نمونه شود . در اطراف اين ترک تنش به صورت پيچيده اي توزيع مي شود. حداکثر تنش کششي ايجاد شده د ر راس ترک بزرگتر از خارجيs است و تنش بحراني ( sc ) ناميده ميشود.تا زماني که sc کوچکتراز استحکام کششي است نمونه نمي شکند .
با وارد آمدن تنش به نمونه د ر محدوده الاستيکي ابتدا انرژي پتانسيل در نمونه ذ خيره مي شود . موقعي که ترک شروع به رشد مي کند بين مقدارکاهش انرژي پتانسيل ذخيره شده د رنمونه وانرژي سطحي ناشي از رشد ترک تعادل برقرار است . تازماني رشد ترک ادامه پيدا مي کند که از انرژي الاستيکي کاسته و به انرژي سطحي افزوده شود، يعني تالحظه اي که شکست ظاهر گرد د .
ابتدا گريفيث با توجه به روابط مربوط به انرژي پتانسيل ذ خيره شده و انرژي سطحي ترک در ماده الاستيکي ،مانند شيشه و تغيير و تبد يل آنها به يک د يگررابطه زير را ارائه کرد:

 

s=√2Egs ∕ pa


اين رابطه براي حالت تنش د و بعدي برقرار است . gs د ر اين رابطه انرژي سطحي ويژه و E مد ول الاستيکي ماده است .
براي حالت تغيير شکل د و بعدي ( حالت تنش سه بعدي باصرفنظر از تغيير شکل د ربعد سوم ) رابطه زير را ارائه کرد:

s = √ 2Egs ∕ pa(1_ n² )

لازم به تذکر است که رابطه گريفيث براي يک ماده الاستيکي شامل ترک بسيار ريز باراس ترک تيز ارائه شد و اين رابطه ترک باشعاع راس ترک 0≠r را شامل نمي شو د . بنابراين رابطه گريفيث شرط لازم براي تخريب است ، اما شرط کافي نيست .
در رابطه گريفيث انرژي تغيير شکل پلاستيکي در نظر گرفته نشده است . ازاين ر و اروان انرژي تغيير شکل پلاستيکي ، که براي فلزات و پليمرها در فرآيند شکست قابل توجه است رادر نظر گرفت و رابطه زير راارائه کرد:

s = √ 2E(gs+gp) ∕ pa

سپس اروين رابطه گريفيث را براي موادي که قابليت تغيير شکل پلاستيکي دارند ، به کار برد و باتوجه به ميزان رها شدن انرژي تغيير شکل الاستيکي در واحد طول ترک د رحين رشد ( G) رابطه زير را براي حالت تنش د و بعدي ارائه داد :
 

s = √ EG ∕ pa

بامقايسه با رابطه قبل (gs+gp) 2 = s است . بد ين ترتيب د ر لحظه ناپايداري ، وقتي ميزان رها شد ن انزژي تغيير شکل الاستيکي به يک مقدار بحراني رسيد ، شکست پديدار مي شود. در اين صورت در لحظه شکست :

                     براي حالت تنش دو بعدي                        Gc= pasc² ∕ E
                     براي حالت کرنش دو بعديGc= pa(1- n² ) sc² ∕ E = Kc² ∕ E    

 Gcمقياسي براي تافنس شکست يک ماده بوده و مقدار آن براي هر ماده اي ثابت و معين است . بامعلوم بودن اين کميت مي توان مشخص کرد که مقدارa به چه اندازه اي بايد برسد تاجسم بشکند . بدين ترتيب اين رابطه در مکانيزم شکست اهميت دارد. هرچقدر Gcکوچکتر باشد ، تافنس کمتر يا به عبارتي ماده تردتراست .
رابطه زير را براي حالت تنش دو بعدي مي توان به صورت زير نوشت :


Gc = √ EGc ∕ pa


و براي شرايط تغيير شکل نسبي د و بعدي رابطه زير ارائه شده است :


s = √ EGc ∕ pa(1_n²)


تعيين تنش شکست بحراني sc کار چندان ساده اي نيست . اما مي توان گفت که به ازاي تنشهاي جسم باوجود ترک هنوز نمي شکند . از اين رو تنش درحد پاينتر از مقدار بحراني با ضريب شدت تنش K توصيف و رابطه زير براي آن ارائه شد ه است :

K= fs√ pa

در اين رابطه f ضريب هند سه نمونه معيوب ، s تنش اعمالي وa اندازه عيب است ، در شکل تئوري گريفيث اگر عرض نمونه نامحدود فرض شود ، دراين صورت 1 = f است . با انجام آزمايش روي نمونه اي با اندازه معيني از عيب مي توان مقدار k ، که به ازاي آن ترک شروع به رشد کرده و موجب شکست ميشود ، را تعيين کرد . اين ضريب شدت تنش بحراني به عنوان تافنس شکست ناميده ميشود و به Kc نشان داده ميشود .اماازطرفي ، همچنين به ازاي تنش ثابتي درحد کوچکتر از استحکام کششي باافزايش کند ترک ، طول ترک (a) ميتواند به مقدار بحراني برسد و به ازاي آن نمونه تخريب شود.
 

 

تافنس شكست (Kc) از فولادي با تنش تسليم MN.m2 2070 با افزايش ضخامت تا تافنس شكست در حالت تغيير شكل صفحه اي (دو بعدي) كاهش مي يابد.

کميتهاي Kcو Gc بستگي به ضخامت نمونه دارد. همين که ضخامت نمونه افزايش يافت ، تافنس شکست Kcتا مقدار ثابتي کاهش مي يابد ، اين مقدار ثابت Kc تافنس شکست تغيير شکل نسبي دو بعدي KIc ناميده مي شود . Kc کميتي مستقل از اندازه نمونه است و در محاسبه استحکام که مستلزم اطمينان بالاست ، به کار ميرود .
بنابراين در طراحي در محاسبات بايد روابط زير توجه شود :

s< Kc ∕ √ pa


و در حالت تغيير شکل دو بعدي ( حالت تنش سه بعدي باناچيز بودن تغيير شکل در بعد سوم):

s< K1c ∕ √ pa


کميتهاي K1c و G1c نه فقط براي گسترش ترک ترد ونرم تعريف شد ه است ، بلکه همچنين براي شکست تحت شرايط تنش خوردگي ، خستگي و خزش نيز به کار ميرود. در جداول زير تافنس شکست تعدادي از مواد ارائه شده است .



تافنس شكست تعدادي از مواد طراحي

 

تافنس شكست در حالت تغيير طول نسبي دومحوري (KIc) تعدادي از مواد

 

 اگر حد اکثر اندازه عيب موجود در قطعه a و مقدار تنش وارد برآن s باشد ، ميتوان ماده اي را باتافنس شکست Kc يا K1c به اندازه کافي بالا ، که بتواند از رشد ترک جلوگيري کند، انتخاب کرد. همچنين اگر حداکثر اندازه مجاز عيب موجود درقطعه و تافنس شکست ماده ، يعني Kc يا K1c، معلوم باشد در آن صورت ميتوان حداکثر تنش قابل تحمل براي قطعه رامشخص کرد. از اين رو ميتوان اندازه تقريبي قطعه را تيين کرد، آن چنان که از پايينتر آمدن حداکثر تنش ايجاد شده از حد مجاز، اطمينان حاصل شود.
همچنين اگر ماده معيني انتخاب و اندازه قطعه و تنش وارد برآن مشخص شده باشد ، حد اکثر اندازه مجاز عيب قابل تحمل را ميتوان به طور تقريب بدست آورد.
توانايي هرماده در مقابل رشد ترک به عوامل زير بستگي دارد:
1- عيوب بزرگ ، تنش مجاز را کاهش ميدهد. فنون خاص توليد، مانند جداسازي و کاهش ناخالصيهااز فلز مذاب و فشردن ذرات پودر در حالت داغ در توليد اجزاي سراميکي همگي ميتواند موجب کاهش اندازه عيب شود و تافنس شکست را بهبود ببخشد.
2- در فلزات انعطاف پذير ، ماده مجاور راس ترک ميتواند تغيير فرم يابد . به طوري که سبب باز شدن راحت راس ترک و کاسته شدن از حساسيت آن شده و ضزيب شدت تنش را کاهش داده و از رشد ترک جلوگيري ميکند معمولا افزايش استحکام فلز انعطاف پذيري را کاهش ميدهد و سبب کاهش تافنس شکست ميشود ، مانند سراميکهاوتعداد زيادي از پليمرها ، تافنس شکست بسيار پايينتر از فلزات دارند.
3- مواد ضخيمتر وصلبتر داراي تافنس شکست کمتر از مواد نازک هستند.
4- افزايش سرعت وارد کردن بار، مانند سرعت وارد شدن بار د ر آزمايش ضربه ، نوعاتافنس شکست جسم را کاهش ميدهد.
5- افزايش درجه حرارت معمولا تافنس شکست راافزايش ميدهد، همان گونه که د ر آزمايش ضربه اين چنين است .
6- با کوچک شدن اندازه دانه ها معمولا تافنس شکست بهبود مييابد ، د ر حالي که با وجود عيوب نقطه اي و نابجاييهاي بيشتر تافنس شکست کاهش مييابد. بنابراين مواد سراميکي دانه ريز ميتواند مقاومت به رشد ترک را بهبود بخشند.


دسته بندی : متالورژی مکانیکی

جيوه

اطلاعات اولیه
جیوه که آن را سیماب ( quicksilver ) هم می‌نامند عنصر شیمیایی است که در جدول تناوبی دارای نشان Hg و عدد اتمی 80 می‌باشد. جیوه که فلزی سبک ، نقره‌ای ، سمی و جزء عناصر واسطه است، یکی از دو عنصری می‌باشد که در دماهای معمولی اتاق حالت مایع دارند ( فلز دیگر برم است ) و در دماسنجها ، فشارسنجها و سایر وسایل علمی کاربرد دارد. جیوه عمدتا" بوسیله کاهش از ماده معدنی cinnabar ( سولفور جیوه ) بدست می‌آید.

تاریخچــــــــه

جیوه را چینیان و هندیهای باستان شناخته بودند و در گورهای متعلق به 1500سال قبل از میلاد یافت شده‌اند. تا سال 500 قبل از میلاد ، از جیوه به همراه مواد دیگر برای ساخت آمالگامها استفاده می‌شد. یونانیان باستان از این فلز سمی در پمادها و رومیان از آن در لوازم آرایشی استفاده می‌کردند. کیمیاگران تصور می‌کردند تمامی مواد از این ماده ساخته شده‌اند. همچنین می‌پنداشتند در صورتی که جیوه سخت شود، به طلا تبدیل خواهد شد.

در قرن 18 و قرن 19 از نیترات جیوه برای کندن موی حیوانات جهت ساختن کلاههای نمدی استفاده می‌کردند. این مسئله موجب بروز آسیبهای مغزی در بین کلاهدوزان شد که گفته می‌شود عبارت: " دیوانه مثل یک کلاهدوز " و شهرت Mad hatter آلیس در سرزمین عجایب از آنجا آمده است.

کیمیاگران نام خدای رومیان Mercury را برای این عنصر در نظر گرفتند. نماد جیوه Hg ، از واژه hydrargyrum که لاتینی شده کلمه یونانی hydrargyros می‌باشد، برگرفته شده که ریشه‌های یونانی این واژه مرکب به معنی آب و نقره بود. جیوه یکی از معدود عناصری است که دارای یک نماد کیمیاگری است.

پیدایــــــــش

جیوه که عنصری کمیاب در پوسته زمین است، یا در کانی‌های محلی ( کمیاب ) و یا درcinnabar , corderoite , livingstonite و دیگر مواد معدنی یافت می‌شود که cannibar ) HgS ) فراوان‌ترین سنگ معدن جیوه می‌باشد. تقریبـا" 50% جیوه مورد نیاز جهان از اسپانیا و ایتالیا و بیشتر 50% بقیه از یوگوسلاوی ، روسیه و شمال آمریکا تامین می‌شود. این فلز را با روش گرم کردن cannibar در جریان هوا و تغلیظ بخار آن استخراج می‌کنند.

خصوصیات قابل توجه

جیوه ، فلزی سنگین ، نقره‌ای رنگ ، یک ظرفیتی یا دو ظرفیتی است که هادی ضعیفی برای گرما اما هادی مناسبی برای الکتریسیته می‌باشد و تنها فلزی است که در دمای اتاق به حالت مایع است ( مایعی مات و درخشان ). جیوه براحتی و تقریبا" با تمامی فلزات معمولی از جمله طلا و نقره آلیاژ می‌سازد، ( بجز آهن ) که به هر کدام از این آلیاژها ملغمه ( amalgam ) می‌گویند.

نقطه انجماد جیوه 40- درجه سلسیوس معادل 40- درجه فارنهایت می‌باشد. این تنها دمایی است که در هر دو مقیاس برابراست. همچنین این عنصر دارای انبساط حرارتی حجمی ثابتی می‌باشد، واکنش پذیری آن نسبت به
روی و کادمیم کمتراست و جایگزین هیدروژن اسیدها نمی‌شود. حالتهای عادی اکسیداسیون این عنصر عبارتند از: mercurous یا 1+ و mercuric یا 2+. نمونه‌های بسیار نادری هم از ترکیبات جیوه 3+ وجود دارد.

کاربردهــــــا

  • بیشترین کاربرد جیوه در ساخت مواد شیمیایی صنعتی و کاربردهای برقی و الکترونیکی است. علاوه بر این‌ها از جیوه در دماسنجها بخصوص برای حرارتهای بالا مورد استفاده قرار می‌گیرد.
  • چون به‌آسانی با طلا تولید آمالگام می‌کند، برای تهیه طلا از سنگ معدن مورد استفاده قرار می‌گیرد.
  • از جیوه علاوه بر دماسنجها در فشارسنجها ، پمپهای انتشار و بسیاری وسایل آزمایشگاهی دیگراستفاده می‌گردد.
  • نقطه سه گانه جیوه – 8344/38- درجه سانتیگراد – نقطه ثابتی است که بعنوان معیار در مقیاسهای بین‌المللی حرارتی ( ITS-90 ) بکار رفته است.
  • از جیوه گازی در لامپهای بخار جیوه و تابلوهای تبلیغاتی استفاده می‌شود.
  • کاربردهای متنوع جیوه : سویچهای جیوه ای ، حشره کشها ، آمالگامها/ داروهای دندان ، باتریهای جیوه‌ای برای تولید هیدروکسید سدیم و کلر ، الکترود در برخی انواع الکترولیز ، باتریها ( پیلهای جیوه‌ای ) و کاتالیزورها.

ترکیبات

مهمترین نمکهای آن عبارتند از:


  • کلرید جیوه – که بسیار خورنده ، پالایش شده و به‌شدت سمی است.
  • کلرید mercurous – کالومل بوده و هنوز هم گاهی اوقات در پزشکی کاربرد دارد.
  • فولمینات جیوه – یک چاشنی که در مواد انفجاری کاربرد وسیعی دارد.
  • سولفید جیوه که از آن در ساخت شنگرف که رنگدانه مرغوبی برای رنگسازی است، استفاده می‌شود.

ترکیبات آلی جیوه نیز مهم هستند. مطالعات آزمایشگاهی ثابت کرده است که تخلیه الکتریکی موجب می‌شود تا گازهای نجیب نئون ، آرگون ، کریپتون و زنون با بخار جیوه ترکیب گردند. محصولات تولید شده از طریق این ترکیب توســط نیــــرویهـــــای van der waals در کنار هم قرار گرفته و نتیجه آن HgNe , HgKr , HgAr و HgXe است. Methyl mercury ترکیب خطرناکی است که به مقدار فراوان در آبها و جریانات آبی بعنوان عامل آلوده کننده دیده می‌شود.

ایزوتوپهــــــــا

برای جیوه ، هفت ایزوتوپ پایدار وجود دارد که فراوان‌ترین آنها Hg-202 است ( فراوانی طبیعی 86/26% ). پایدارترین ایزوتوپهای پرتوزاد آن Hg-194 با نیم عمر 444 سال و Hg-203 با نیمه عمر 46,612 روز هستند. بیشتر مابقی ایزوتوپهای پرتوزاد آن ، نیمه عمر کمتر از یک روز دارند.

هشدارهـــــــــا

جیوه در هر دو حالت گازی و مایع به‌شدت سمی است. اگر این فلز سنگین و سمی خورده شود، منجر به ضایعات مغزی و کبدی می‌شود. به همین علت ، امروزه در دماسنجهایی که فقط به منظور اندازه گیری درجه حرارت آب و هوا ساخته شده‌اند، از الکل رنگیزه دار استفاده می‌شود؛ نقطه جوش الکل از هر دمای طبیعی در زمین بیشتر است.

هنوز هم در بسیاری از دماسنجهای پزشکی به علت دقت بالای جیوه از این عنصر استفاده می‌گردد. هنگام استفاده از این دماسنجها باید توجه زیادی نمود تا گاز گرفته نشوند. واحد تجاری برای کار با جیوه flask است که وزن آن معادل Ib76 می‌باشد.

جیوه ماده سمی بسیار خطرناکی است که به‌آسانی از طریق بافتهای پوستی ، تنفسی و گوارشی جذب می‌شود. یکی از موارد مسمومیت با جیوه به حساب می‌آید. جیوه ، سیستم عصبی مرکزی را مورد تهاجم قرار داده و تاثیرات بسیار بدی روی دهان ، لثه و دندان می‌گذارد.

تماس با مقدار زیاد جیوه و در مدت طولانی باعث آسیبهای مغزی و در نهایت منجر به مرگ خواهد شد. هوایی که در دمای اتاق با بخار جیوه اشباع شده باشد، به رغم نقطه جوش بالا بسیار سمی است ( خطر در دماهای بالاتر افزایش می‌یابد )؛ بنابراین با این عنصر باید در نهایت دقت رفتار شود. لازم است ظروف جیوه بصورت مطمئن پوشیده شوند تا از سررفتن یا تبخیرآن جلوگیری شود. حرارت دادن جیوه یا ترکیبات آن همیشه باید بوسیله هواکشهای مناسب و قوی انجام شود؛ بعضی اکسیدهای آن می‌توانند به جیوه عنصری تجزیه شوند که سریعا" تبخیر شده و ممکن است دیده نشوند.


دسته بندی : فلزات غیرآهنی

قلع

 
قلع عنصر شیمیایی است که در جدول تناوبی با نشان Sn وعدد اتمی 50 وجود دارد.این فلز ضعیف چکش خوار و نقره ای که به آسانی در آزمایش‌های مربوط به هوا اکسیده نمی شود و در برابر فرسایش مقاوم است ، در بسیاری از آلیاژها وجود داشته و بعنوان پوشش مواد دیگر جهت جلوگیری از فرسایش آنها بکار می رود.قلع را عمدتا" از ماده معدنی کاسی تریت که در آن بصورت اکسید وجود دارد ، بدست می آورند.

خصوصیات قابل توجه


قلع فلزی است چکش خوار ، قابل انعطاف، شدیدا" بلورین وسفید نقره ای که ساختار بلوری آن هنگام خم شدن قطعه ای از قلع صدای خاصی ایجاد می کند( علت آن شکست بلورها است).این فلز دربرابر فرسایش ناشی از آب تقطیر شده دریا و آب لوله کشی مقاومت می کند اما بوسیله اسیدهای قوی و موادقلیایی و نمکهای اسیدی مورد حمله قرار می گیرد. هنگامیکه اکسیژن بصورت محلول است قلع بعنوان کاتالیزور عمل کرده و واکنشهای شیمیایی را تسریع می کند.
درصورتیکه آنرا درحضور
آزمایش‌های مربوط به هوا حرارت دهند Sn2 حاصل می شود. Sn2 اسید ضعیفی بوده و با اکسیدهای بازی تولید نمکهای قلع می کند.قلع را می توان به مقدار زیادی جلا داد و بعنوان پوشش سایر مواد جهت ممانعت از فرسودگی یا واکنشهای شیمیایی دیگرمورد استفاده قرار می گیرد.این فلز مستقیما" با کلر و اکسیژن ترکیب می شود و و جایگزین هیدروژن اسیدهای رقیق می گردد.قلع در دماهای معمولی انعطاف پذیر است اما در صورتیکه گرم شود شکننده می شود.

شکلهای مختلف


در فشار طبیعی قلع جامد دارای دو شکل مختلف است . در دماهای پایین به شکل خاکستری یا قلع آلفا وجود دارد که دارای ساختار بلوری مکعبی مانند سیلیکن و ژرمانیم است. وقتی دما بالاتر از 2/13 درجه سانتیگراد باشد به رنگ سفید یا قلع بتا تبدیل می شود که فلزی بوده و دارای ساختار چهار وجهی است. درصورتیکه سرد شود به آهستگی بصورت خاکستری برمی گردد که بیماری قلع نامیده می شود.بهر حال این تغییر شکل تحت تاثیر ناخالصیهایی از قبیل آلومینیم و روی قرار می گیرد که با افزودن آنتیموان یا بیسموت می توان از آن جلوگیری کرد.

کاربردهــــــا


قلع به آسانی به آهن متصل شده وبرای پوشش سرب روی و فولاد مورد استفاده قرار می گیرد تا از پوسیدگی آنها جلوگیری شود.قوطیهای فولادی با پوشش قلع برای نگهداری غذا کاربردی وسیع دارد و این کاربرد بخش وسیعی از بازار قلع فلزی را تشکیل می دهد.


سایر کاربردها :

زیر دمای k))72/3 قلع تبدیل به یک ((ابر رسانا می شود.در واقع قلع یکی از اولین ابررساناهایی بود که مورد بررسی قرار گرفت ؛Meissner effect که یکی از ویژگیهای ابررساناها می باشد اولین بار در بلورهای قلع ابررسانا کشف شد.آلیاژ نیوبیوم – قلع (Nb3Sn) بعلت دمای بحرانی بالا(k 18) و میدان مغناطیسی بحرانی( T 25) بصورت سیمهایی برای آهنرباهای ابررسانا کاربرد تجاری پیدا کرده است .یک آهنربای ابررسانا به وزن چند کیلوگرم قادر به تولید میدانهای مغناطیسی مشابه الکترومغناطیسهای چند تنی می باشد.

تاریخچـــــــه


قلع ( انگلوساکسون tin و لاتین stannum) یکی از قدیمی ترین فلزات شناخته شده است و از دوران باستان بعنوان بخشی از برنز مورد استفاده بوده است.چون موجب سخت شدن مس می گردد از 3500 سال قبل از میلاد در وسایل برنزی بکار رفته است.

 



رونق تجارت قلع در دوران باستان بین معادن Cornwall و تمدنهای مدیترانه وجود داشته است. با این وجود شکل خالص این فلز تا تقریبا" 600 قبل از میلاد کاربرد نداشته است.

پیدایــــــــــش

مواد


 

 

تقریبا" 35 کشور در جهان به استخراج قلع مشغولند. تقریبا" هر قاره ای یک کشور مهم تولید کنن


دسته بندی : فلزات غیرآهنی

مروری بر اهمیت و خواص چدنهای با گرافبت های فشرده

"معرفي اوليه" :

 چدن با گرافيت فشرده و یا ""Compacted Graphite Cast Iron محدوده اي از چدنها هستند كه از نظر خواص فيزيكي و مكانيكي بين چدنهاي خاكستري و داكتيل قرار دارند و به دليل دارا بودن تركيبي از استحكام، هدايت حرارتي بالا و قابليت ريخته گري مناسب مورد توجه ريخته گران قرار گرفته است. كارآيي CGI در اكثر موارد كاربردي مورد تاييد قرار گرفته است، اما توليد انبوه اين نوع چدن به علت تغييرات وسيع ريز ساختار و به خاطر به كار بردن تيتانيم براي تثبيت ساختار گرافيت فشرده، محدود شده بود.[1]

" منظور از چدن با گرافيت فشرده اين است كه چدن عاري از گرافيت ورقه اي و داراي 20% گرافيت كروي و 80% گرافيت فشرده باشد".[2]

در حقيقت پيدايش چدنهاي با گرافيت فشرده شايد به طور اتفاقي در جهت ايجاد گرافيتهاي كروي حاصل شده باشد.

در واقع  هنگام توليد چدنهاي نشكن در مواردي كه مقدار منيزيم كم بوده اين ساختار گرافيت پديد آمده و محققين با اين ساختار گرافيت مواجه شدند و كم كم به فكر بازرسي بيشتر اين ساختار و يافتن خواص آن افتادند.

توليد صنعتي اين چدنها براي مصارف صنعتي در سال 1965 و توسط R.D.Schelleng پتنت شد.

ولي قابل توجه اينكه امروزه طراحان موتور با افزايش ميزان فشار اشتعال در داخل موتور موفق به بهبود كاركرد موتور، كاهش ميزان مصرف سوخت و آلاينده ها شده اند. به همين خاطر در ساخت موتورها بايستي از مواد با استحكام بالا استفاده شود كه چدن خاكستري جوابگوي اين مسيله نيست.

چدن داكتيل نيز به خاطر هدايت حرارتي پايين آن مورد توجه قرار نگرفته است. چدن با گرافيت فشرده تنها نوع چدن است كه هم خاصيت استحكام و هم هدايت حرارتي بالا را دارا مي باشد. امروزه شركت اتومبيل سازي  Ford پيشتاز در امر توليد موتور از جنس CGI است.

بدنه و سر سيلندر موتور مستلزم ايجاد ساختار تقريبا يكنواخت گرافيت و عدم استفاده از تيتانيم به علت تضعيف خاصيت ماشينكاري آن است.

 بعضي از نمونه هايي كاربردي CGI  عبارتند از : "مانيفلد خروجي دود، سر سيلندر، بدنه موتور، اجزاي سيستم ترمز و قطعات مقاوم به خستگي حرارتي".[1]

ريز ساختار " : "CGI

 گرافيتها در چدن CGI به صورت كرمي شكل (Worm-Shape ) ديده مي شوند اين ذرات مانند گرافيتهاي ورقه اي در جهات تصادفي آرايش يافته اند با اين تفاوت كه نسبت به آن كوتاهتر و ضخيم تر و گوشه هاي آن گرد مي باشد.( در شکل 1 و 2 نمونه ای از این ساختار دیده می شود.)

 

شکل1: شکل گرافیت های فشرده با  10 % کرویت در متالوگرافی

 

شکل 2: تصویر سه بعدی از مورفولوژی گرافیت[2]

 با  اين كه ذرات كرمي شكل (worm shape) به حالت دو بعدي به صورت مجزا ديده مي شوند ولي در حالت سه بعدي با گرافيت هاي كناري خود در فاز زمينه مرتبط هستند.

مورفولوژي پيچيده مرجاني شكل اين نوع گرافيتها همراه با گوشه هاي گرد سطح نا صاف، منجر به چسبندگي قوي ذرات با فاز زمينه مي گردد كه به خاطر همين مسئله از شروع و اشاعه ترك جلوگيري مي كند و موجب بهبود خواص مكانيكي مي گردد.

 در شکل 3 می توانید چگونگی مورفولوژی گرافیت را در سه نوع چدن خاکستری،  گرافیت فشرده و نشکن مورد بررسی قرار دهید.
 

الف- ورقه ای

 

مواد

    پ- كروي

مواد

 ب- فشرده

مواد

شکل 3: عكس هاي SEM از گرافيتهاي کروی، فشرده و خاکستری[1]

 

حضور گرافيت هاي كروي در ريز ساختارهاي چدنهاي CGI اجتناب ناپذير مي باشد. با افزايش ميزان گرافيت كروي، استحكام و سختي افزايش ولي قابليت ريخته گري، ماشينكاري و هدايت حرارتي كاهش مي يابد. فاز زمينه اين نوع چدنها بر حسب نوع مصارف آن و خواص مورد نظر قطعه مي تواند كاملا پرليتي، فريتي و يا مخلوطي از هر دو باشد.

يكي از مهمترين مسايل در ارتباط با اين چدن تعيين ميزان فشردگي و درصد كروي شدن است. مي توان از فرمولهاي معتبر نيز براي تعيين ميزان درصد گرافيت كروي در مقطع خاصي از قطعه استفاده كرد، در معادله زير مي توان با استفاده از مساحت گرافيتهاي كروي به كل مساحت گرافيتها ، درصد كرويت را تعيين كرد.

  مواد

 

تركيب شيميايي:

 مشخصات و خواص چدن با گرافيت فشرده در دامنه وسيعي از كربن معادل هيپويوتكتيك يعني 7/3% و تا هايپر يوتكتيك يعني 7/4%، با ميزان كربن 4-1/3%  و ميزان سيليسيم 3-7/1% تعريف شده است .

 با مقدار سيليسيم ثابت، انتخاب كربن معادل پايينتر احتمال تبريدي شدن را افزايش مي دهد و باعث شمارش ندول كمتري مي گردد. با مقدار كربن معادل ثابت، مقدار سيليسيم بالاتر، تعداد گرافيتهاي كروي را افزايش مي دهد. مقدار كربن و سيليسيم بهينه را مي توان از روي شكل زير انتخاب نمود:

مواد

                        شکل 4: تعیین میزان سیلیسیم و کربن بهینه برای تولید CGI

 

كربن معادل بهينه بايستي بر مبناي ضخامت قطعه انتخاب شود، براي اين ضخامت معين، كربن معادل بالاتر ايجاد گرافيت شناور و كربن معادل پايين تر تمايل به تبريدي شدن را افزايش مي دهد.

براي ضخامت هاي 10-40 mm، تركيبات يوتكتيك (CE=4.3) توصيه مي شود تا خواص مطلوبي در قطعه به دست آيد . مقدار منگنز مي تواند 0.1-0.6% باشد. فسفر بايد پايين تر از 0.06% باشد چون ميزان بالاتر از آن باعث كاهش چقرمگي مي شود.

 هر چند چدن CGI با درصد گوگرد بالا حدود (0.07-0.12%) توليد شده است، اما احتمالا كاهش گوگرد به 0.01-0.025% اقتصادي تر مي باشد. چنانچه مقدار گوگرد زياد باشد مصرف آلياژ افزايش مي يابد. در ضمن وضعيت تركيب شيميايي نيز دگرگون مي گردد زيرا عناصر مخصوص عمليات بايد با گوگرد باقيمانده متوازن گردد. مقدار گوگرد باقيمانده پس از عمليات حدود 0.01-0.02% خواهد بود. به منظور حصول اطمينان از تشكيل گرافيتهاي فشرده (كرمي شكل) لازم است همانند فرآيند توليد چدن نشكن از عناصري براي عمليات چدن سازي استفاده گردد. اين عناصر عبارتند از"منيزيم، عناصر نادر خاكي ( سريم، لانتانيم و غيره) ، كلسيم، تيتانيم و الومينيوم".

 

 ذوب:

مواد مورد نياز براي توليد چدن CGI در اصل همانند موادي مي باشند كه براي توليد چدن SG به كار مي روند. براي ذوب كردن چدن CG از كوره هاي القايي ، كوپل، قوس الكتريكي استفاه مي شود. نيازمنديهاي مربوط به مواد، گرم نمودن زياد و گوگرد زدايي قبل از آماده نمودن نهايي ذوب، مشابه چدن نشكن است. تهیه مذاب براي ساختن قطعات چدني با گرافيت فشرده به كمك فرو سيليس منيزيم انجام مي گيرد.

حضور عناصر خاكي نادر در كنار آليا‍ژ فروسيليس منيزيم باعث افزايش فشردگي گرافيت و در نتيجه باعث ايجاد خواص مكانيكي بهتر مي شود.

روش هاي مختلفي براي توليد چدن گرافيت فشرده در صنايع ريخته گري ابداع شده است. متداولترين روش عمليات مذاب پايه با عناصر كروي كننده مانند     "Ce ,Mg" و ضد كروي كننده مانند" " Sn ,Ti ,Al مي باشد. استفاده از عناصر آلومينيوم و تيتانيم و قلع موجب تشكيل كاربيد و پرليت در قطعات صنعتي مي شوند كه بايستي براي ماشينكاري بهتر داراي زمينه فريتي باشند.

 

"عمليات ذوب":

 مهمترين روشهاي توليد چدن CG مي تواند به قرار زير طبقه بندي گردند:

1-   عمليات ذوب با آلياژهاي منيزيم

2-   عمليات ذوب با آلياژهاي فشرده كننده و همچنين آلياژهاي مانع فشرده شدن گرافيتها

3-   عمليات ذوب با آلياژهايي كه پايه آنها فلزات نادر خاكي يا آلياژهاي نادر خاكي –منيزيم مي باشد.

4-  عمليات بر روي چدن اصلي حاوي مقادير نسبتا بالايي از عناصر گوگرد و آلومينيوم همراه با الياژهاي حاوي عناصر فشرده كننده گرافيت.

هنگاميكه منيزيم باقيمانده 0.013-0.022%  كنترل و ثابت گردد در اين صورت چدن CG حاصل مي شود. كنترل مقدار منيزيم  در حد فوق هنگام عمليات در پاتيل مشكل مي شود زيرا چنانچه مقدار منيزيم باقيمانده از مقدار فوق افزونتر شود چدن نشكن حاصل گرديده و در صورتي كه اين مقدار كاهش يابد چدن به دست آمده چدن خاكستري خواهد بود.

"مواد قالبگيري":

 همانند جدن نشكن از كليه موادي كه براي توليد SG به كار گرفته مي شود در اين زمينه نيز مي توان استفاده كرد. اين مواد عبارتند از ماسه مخلوط با بنتونيت، ماسه با سيمان و ماسه با رزين .

مواد مذاب چدنهاي گرافيت فشرده حساسيت بيشتري نسبت به جذب گوگرد از قالب نسبت به مواد مذاب چدن نشكن دارد. بر خلاف چدن نشكن چدن CG نبايد بيش از اندازه عمليات گردد. هنگام استفاده از ماسه رزيني بازيابي شده ، با اسيد پاراتولو سولفونيك (PTS) به عنوان كاتاليست سخت كننده بايد دقت زيادي معطوف گردد  چون باعث افزايش ميزان گوگرد جذب شده به مذاب مي گردد.[1]

 

"خواص مكانيكي و فيزيكي":

 *سياليت چدن بستگي زيادي به ميزان كربن، سيليسيم و دما دارد. افزون بر آن مورفولوژي انجماد در اين زمينه نقش دارد . چدن با گرافيت ورقه اي داراي بهترين سياليت مي باشد و چدن نشكن از اين ديدگاه بدترين وضع را دارد . همانطور كه انتظار مي رفت چدن CG بين اين دو وضعيت واقع شده است.

 *نظر به اين كه چدنهاي CG شكل با CE يكسان نسبت به چدنهاي خاكستري داراي استحكام بيشتري مي باشند. در مورد  مشخصات انقباضي اين چدن بايد گفت كه  توليد قطعات CGI سالم و عاري از كشيدگي هاي ريز داخل و خارجي نسبت به چدنهاي نشكن آسانتر بوده و كمي از چدنهاي خاكستري مشكلتر مي باشد. به علت پايين بودن مقدار انقباض كه چدن CG امكان عدم استفاده از تغذيه مقدور مي باشد. به اين ترتيب هزينه ساخت با اصلاح مدل هنگام تبديل مواد از خاكستري به CG كاهش خواهد يافت و مي توان با همان سيستم راهگاهي بكار رفته در چدن خاكستري، چدن كرمي شكل را (گرافيت فشرده) توليد كرد. در واقع نسبت به چدن نشكن انقباض حاصل از انجماد (Shrinkage) كمتري داشته و تغذيه هاي محدودتري نياز دارد كه در نتيجه راندمان ريختگي ان بالاتر خواهد بود.

*چدن CG در مقايسه با چدن خاكستري داراي انعطاف پذيري و استحكام بالاتري مي باشد. استحكام كششي و تنش تسليم اين چدن، كمي پايين تر از چدن نشكن بوده و بسيار بيشتر از چدن با گرافيت ورقه اي مي باشد.

                      چدن كروي < مدول الاستيسيته چدن CG < چدن ورقه اي

*استحكام چدنهاي با گرافيت فشرده با افزايش ضخامت كاهش مي يابد.

*چون هدايت حرارتي گرافيت در چدنها بيشتر از زمينه فلزي مي باشد، پس شكل، مقدار، اندازه و پراكندگي گرافيت هاي موجود در چدن نقش تعيين كننده در كنترل هدايت حرارتي دارد. در چدنهاي نشكن كه گرافيت كروي و منفصل دارند، هدايت حرارتي كمتر است.

*هدايت حرارتي با زمينه فريتي بيشتر از هدايت حرارتي با زمينه پرليتي است.

*هدايت حرارت خوب و استحكام كششي بالاي اين چدن ، كاربردش را در درجه حرارتهاي بالا مناسب مي سازد كه بايد در برابر رشد و پوسته شدن مقاومت از خود نشان دهد.

*براي ساخت قالب هاي چدني و قالب شمش ريزي در صنعت فولاد، سر سيلندرهاي موتورهاي ديزلي و نيز محافظ احتراق توربين بسيار مناسب هستند.

افزايش مقدار سيليسيم تا  2.6% موجب بهبود استحكام و سختي در چدن به صورت ريخته و آنيل شده مي گردد كه علت آن افزايش مقدار فريت مي باشد. سيليسيم به صورت محلول جامد در فاز فريت رسوب كرده و موجب افزايش استحكام آن مي شود.

*چدن با گرافيت فشرده با ساختار زمينه فريتي و پرليتي داراي حالت الاستيك خطي است و حد ارتجاعي ان از چدن نشكن كمتر است.[3]

جدول 1: خواص مکانیکی و فیزیکی CGI با 10% گرافیت کروی را نشان میدهد:[2]

100% پرلیت

70% پرلیت

درجه حرارت (سانتیگراد)

خواص

450

430

410

420

415

375

25

100

300

استحکام کششی نهایی(Mpa )

370

335

320

315

295

284

25

100

300

0.2% استحکام تسلیم( Mpa )

145

140

130

145

140

130

25

100

300

مدول الاستیک(Gpa )

1.0

1.0

1.0

1.5

1.5

1.0

25

100

300

ازدیاد طول نسبی( %)

210

195

175

195

185

165

25

100

300

حد خستگی بدون ناچ (Mpa)

0.44

0.44

0.43

0.46

0.45

0.44

25

100

300

نسبت خستگی

36

36

35

37

37

36

25

100

300

هدایت حرارتی یا رسانائی گرمائی (w/mc )

11.0

11.5

12.0

11.0

11.5

12.0

25

100

300

ضریب انبساط حرارتی (µm/mc )

0.26

0.26

0.27

0.26

0.26

0.27

25

100

300

ضریب پواسون

430

370

400

300

25

400

0.2 درصد استحکام تسلیم (Mpa )

7.1-7.0

7.1-7.0

25

دانسیته (g/cc)

255-207

225-190

25

سختی برینل (BHN)

 

 

شکل5: استحکام کششی نهایی و 0.2% استحکام تسلیم چدنهای CGI با 85-100% پرلیت به عنوان تابعی از دما و ندولاریته.[3]

 

 

مواد

شکل6: تاثیر میزان پرلیت بر استحکام نهایی و استحکام تسلیم 0.2% چدنهای CGI با 0-10% ندولاریته.[3]

  

"کاربرد های  عملی در صنعت":

 تولید و کاربردهای عملی CGI در ابتدای سال 1960 آغاز گردید. مثال بارز این موارد منیفلد های اگزوز، اجزا ترمز، محفظه های پمپ و فلایویل ها می باشند.

با توجه به گزارش AFS Metal Casting Forecast حدود 66000 تن از محصولات CGI در طول سال 2001در آمریکا تولید شده است. به طور نمونه دو نوع بلوک سیلندر از جنس CGI در همان زمان تولید گردید:

"بلوک سیلندر Audi33Lit V8TDI وپوسته موتوردیزلی BMW3 LitV8D"

از کابردهای چدن CGI ، تولید با حجم بالای قطعات پیچیده ای مانند بلوک سیلندرها و سر سیلندرها می توان نام برد که دارای مشخصات ریز ساختاری محدودی بوده و همچنین مجاز به استفاده از تیتانیم به منظور افزایش میزان قابلیت ماشینکاری نیز نمی باشند.

به طوریکه حجم بالایی از تولید بلوک سیلندر CGI در طی سال 2003 جهت مصارف کمپانی های فورد و آئودی صورت پذیرفته است.

مشخصات مربوط به ریز ساختار بسته به شرایط کاری و نیازهای مربوط به تولید انتخاب می گرددند به طور مثال تولید منیفلدهای اگزوز از جنس CGI به میزان حدود 50% کروی شدن گرافیت را به همراه خواهد داشت به طور کلی می توان گفت که کروی شدن گرافیت ها در تولید مناسب و بدون عیوب قطعات ریختگی و همچنین عدم آسیب در هنگام ماشینکاری بسیار موثر می باشد به طور مثال، شرکت دایملر کرایسلر با افزایش میزان کروی شدن گرافیتها تا 50% عیوب ترک را در قطعات  bed plate  کاهش داده است.

 در این مورد میزان کروی شدن گرافیتها بالاتر از حد مجاز می باشد چرا که ماشینکاری این قطعه تنها به فرز کاری  و ایجاد سوراخهای کوچک توسط دریل محدود می گردد و قطعه تحت بارگذاری حرارتی قرار نمی گیرد.

هم اکنون تولید منیفلدهای CGI در شرکت tupy"" با افزودن 0.1-15 % تیتانیم امکانپذیر شده است، افزودن تیتانیم اثر مخربی در رشد گرافیتها داشته و برای تولید چدنهای با گرافیت فشرده بایستی که مقدار زیادی منیزیم به مذاب اضافه شود، حضور بیشتر منیزیم این اطمینان را می دهد که تیتانیم مانع از رشد گرافیتهای کروی نشده و سبب ایجاد گرافیتهای ورقه ای شکل نمی شود.

 زمانی که از فرآیند افزودن تیتانیم برای تولید مانیفولد استفاده می شود، تشکیل نهایی آخالهای کربو نیترید سخت باعث تشکیل یک پوشش ساینده روی سطح شده و اجازه ماشینکاری زیادی را همانند بلوکهای سیلندر و سر سیلندر نمی دهد تاثیر تیتانیم و قابلیت قطعات CGI زمانی آشکار می شود که بدانیم برای افزودن هر 0.1% تیتانیم اضافه شده بیش از هزار آخال کربو نیترید تیتانیم در هر میلیمتر مربعی از سطحی که ماشینکاری می شود وجود خواهد داشت.

حتی با افزایش مقادیر کم تیتانیم به طور شگرفی عمر ابزار در طول عملیات برش ممتد کاهش می یابد بنابر این این امر بدان معنا است که حضور تیتانیم در فرایند تولید  CGI نمی تواند برای تولید بلوکهای سیلندر و سر سیلندر مورد استفاده قرار گیرد.[2]

"نکته مهم":

چدن با گرافیت فشرده می تواند با مقادیر متغیر پرلیت به تناسب کاربرد مورد نظر تولید شود، منیفلدها نیاز به بیش از 95% فریت به منظور جلوگیری از افزایش دمای بالا را دارند در مقایسه بلوکهای سیلندر و سر سیلندر به طور معمول با میزان پرلیت بالا به منظور افزایش استحکام و سختی تولید می شوند.

چدن های با گرافیت فشرده ممکن است با 98-60% پرلیت به منظور فراهم آوردن میزان سختی مشابه BHN (190-225 ) مانند چدنهای خاکستری متداول مورد توجه واقع شوند، به هر حال ساختارهای تمام پرلیت (100% پرلیت) برای قطعات کمی کاربرد داشته و منجر به ایجاد خواص مکانیکی بالاتری در قطعات می گردند.

 

"در مقایسه با خاکستری مزایای "CGI :

*کاهش ضخامت دیواره با توجه به بارگدازی مشابه، از نقطه نظر طراحی مشخص شده است که پتانسیل کاهش ضخامت مقاطع دیواره های محفظه های سیلندر در CGI بیشتر از خاکستری است،

* افزایش میزان بارگذاری با توجه به طراحی موجود،

* کاهش میزان فاکتورهای ایمنی با توجه به میزان کمتر تغییرات در خواص قطعات،

* کاهش میزان ترک ترد در جابجایی مونتاژ و سایر موارد با توجه به میزان انعطافپذیری بالاتر،

* کاهش میزان ترک ترد در جابجایی و مونتاژ و سایر موارد با توجه به میزان انعطاف پذیری،

* کاهش میزان ترک گرم در حین تخلیه قطعات،

* استحکام بالاتر و نبودن نیاز به فرایند آلیاژسازی.

"در مقایسه با نشکن مزایای CGI ":

*قابلیت ریخته گری بهتر قطعات با ترکیب پیچیده تر،

* بهبود در میزان استحکام ،

* قابلیت تا 20% کاهش میزان تجمع تنش با توجه به میزان هدایت حرارتی بالاتر و نزول پایین تر، بهبود در مقادیر گرمای مبادله شده.


دسته بندی : فلزات آهنی

پلاتین

پلاتين

اطلاعات اولیه

پلاتین ، یکی از عناصر شیمیایی جدول تناوبی است که علامت آن Pt بوده و عدد اتمی آن 78 می‌باشد. پلاتین یک فلز انتقالی خاکستری مایل به سفید که هادی جریان الکتریسیته بوده ، قابل انعطاف ، سنگین و بسیار باارزش است بوده و در مقابل خورده شدن و اکسیداسیون مقاوم بوده و در برخی از معادن مس و نیکل یافت می‌شود. از پلاتین در جواهرات , تجهیزات آزمایشگاهی ، اتصالات الکتریکی ، دندانپزشکی و دستگاه ضد آلودگی در اتومبیل استفاده می‌شود.

تاریخچه

پلاتین از واژه اسپانیولی Platina که به معنی نقره کوچک می‌باشد، گرفته شده است. سالهای زیادی است که پلاتین طبیعی و پلاتین غنی شده آلیاژی شناخته شده است. این فلز توسط سرخپوستهای کلمبیایی استفاده می‌شده است و اولین مرجع اروپایی به پلاتین در سال 1557 در نوشته‌های انسان‌شناس ایتالیایی " Julius Caesar Scaliger" دیده می‌شود که از آن ، به‌عنوان یک فلز اسرار آمیز که از معادن آمریکای مرکزی بین Darién ( پاناما ) و مکزیک استخراج شده و نیز گفته شده است: "تا کنون حتی با هنرهای اسپانیایی ها هم غیر قابل ذوب است."

مواد

اسپانیائی‌ها این فلز را وقتی اولین بار وارد اسپانیا شدند Platina نامیدند. آنها به آن ، به چشم یک ناخالصی در نقره ای که استخراج می‌کردند نگاه می‌کردند و اغلب از آن صرف نظر می‌کردند.

پلاتین توسط "Antonio De Ulloa" ستاره شناس و "Don Jorge Juan y Santacilia" کشف شد. هر دوی آنها توسط پادشاه فیلیپ پنجم برای پیوستن به یک ماموریت جغرافیائی در پرو که از 1735 تا 1745 طول کشید، دعوت شدند. در میان چیزهای دیگر در کلمبیا اولوا ، Platina del pinto را مشاهده کرد که فلزی بی‌استفاده بود که به همراه
طلا در New Granada (کلمبیا) پیدا شده بود.

privateerهای انگلیسی کشتی اولوا را در سفر بازگشت توقیف کردند. اگر چه در انگلستان با او خوش رفتاری شد و حتی در انجمن سلطنتی عضو شد، تا سال 1748 از انتشار یافته‌هایش در مورد فلز ناشناخته منع شد. قبل از آن در سال 1741 ، "Charles Wood" مسقلا این عنصر را جدا کرده بود.

پلاتین در حال حاضر با ارزشتر و گرانتر از طلا می‌باشد و از این جهت جایزه‌های پلاتینی بهتر از جایزه‌های طلایی می‌باشند. قیمت پلاتین بسته به فراوانیش تغییر می‌کند، ولی معمولا 8 برابر طلا ارزش دارد. برای مدتهای طولانی تعریف استاندارد متر بر اساس فاصله بین دو علامت بر روی شمش پلاتین-ایریدیوم بود که در سور ( Sevres )نگهداری می‌شد، تعیین شده بود. از این فلز همچنین در تعریف "Standard Hydrogen Electrode" نیز استفاده می‌شود.

پیدایش

پلاتین معمولا به حالت خالص و یا در سنگ معدن اسپریلیت ( آرسنید پلاتین PtAs2 ) که بزرگترین منبع این فلز است، یافت می‌شود. آلیاژ طبیعی پلاتین و ایریدیوم Platiniridium بوده که در Cooprite معدنی ( سولفید پلاتین، Pt S ) یافت می‌شود.

مواد

این فلز معمولا با مقدار کمی از دیگر فلزات خانواده پلاتین که در مواد آبرفتی در کلمبیا ، اونتاریو و کوه‌های اورال و در برخی از ایالتهای غربی آمریکا یافت می‌شوند، همراه است.

پلاتین از نظر اقتصادی به‌عنوان محصول جانبی فراوری سنگ معدن
نیکل تولید می‌شود. حجم عظیم سنگ معدن فرآوری شده نیکل ، نشانگر این است که پلاتین تنها 2 در میلیون از این سنگ معدن می‌باشد.

خصوصیات قابل توجه

این فلز در هنگامی که خالص باشد، بسیار زیبا و به رنگ نقره‌ای مایل به سفید بوده ، هادی جریان الکتریسیته و نرم و قابل انعطاف می‌باشد. این فلز در برابر خوردگی مقام است. ویژگیهای کاتالیزوری فلزات گروه ششم از خانواده پلاتین بسیار برجسته و مهم می‌باشد. ( توجه داشته باشید که هیدروژن و اکسیژن در مجاورت پلاتین منفجر می‌شوند). دوام بالا و خاصیت ضد تیرگی پلاتین دلیل استفاده از این فلز در ساخت جواهرات ظریف و زیبا می‌باشد.

دیگر ویژگی‌های ممتاز این فلز ، پایداری در برابر
واکنشهای شیمیایی و دماهای بالا و خاصیت پایدار الکتریکی می‌باشد. از تمامی این ویژگی‌ها در صنعت استفاده می‌شود. پلاتین در مجوارت با هوا در هیچ درجه ای اکسید نمی‌شود، اما توسط سیانیدها ، هالوژنها ، گوگرد و بازهای قوی خورده می‌شود. این فلز در اسید هیدروکلریک و اسید نیتریک حل نمی‌شود، ولی به‌راحتی در محلول تیزاب سلطانی حل می‌شود ( اسید کلروپلاتینیک را به وجود می‌آورد ). حالتهای اکسیداسیون پلاتین +2،+3 و +4 می‌باشند.

کاربردها

،از پلاتین در جواهرات ، سیم ، ساخت ظروف با تحمل حرارتی بالا برای مصارف شمیایی و کوره‌های برقی حرارت بالا استفاده می‌شود.


  • از پلاتین خوب جدا شده به عنوان کاتالیزور استفاده می‌شود. برای مثال در مبدلهای کاتالیزوری خودروها و فرایندهای صنعتی مختلف مانند ساخت اسید سولفوریک استفاده می‌شود.

  • این فلز می‌تواند مقدار زیادی از گاز هیدروژن را جذب کرده ، هنگامی که حرارت داده می‌شود، آن را آزاد کند. از این جهت به‌عنوان منبع ذخیره گاز در وسایل نقلیه و در سلول سوختی مطالعه می‌شود.

  • صنایع شمیایی از مقدار قابل توجهی پلاتین یا آلیاژ پلاتین- رادیوم به‌عنوان کاتالیزور و به شکل توری ریزبافت برای کاتالیز کردن اکیسیداسیون انتخابی آمونیاک برای تهیه اکسید نیتریک که ماده خام برای کودها و مواد منفجره می‌باشد و اسید نیتریک استفاده می‌کنند.

  • پلاتین‌های کاتالیزوری در تصفیه نفت خام و بهسازی فرایند تولید بنزین اکتان بالا و همچنین ترکیبات معطر در صنعت پتروشیمی کاربرد دارند.

  • ضریب انبساط این فلز برابر با شیشه‌های Soda-Lime-Silica بوده و در ساخت الکترودهای آب‌بندی شده در سیستمهای شیشه‌ای کاربرد دارد.

  • آلیاژ پلاتین و کبالت ، خاصیت مغناطیسی عالی دارد. آلیاژی که از 76% پلاتین و 23% کبالت تشکیل شده باشد، از نظر مغناطیسی بسیار قوی می‌باشد.

  • آلیاژ 10/90 پلاتین/اوسمیوم برای ساخت ضربان ساز قلب ، دریچه‌های جایگزین و سایر کاشه‌های جراحی استفاده می‌شود.

  • این فلز در پوشش کلاهکهای دماغه موشکها و نازل سوخت موتور جت و دیگر وسایلی که می‌بایست با ضریب اطمینان بالایی در حرارتهای بالا و در تناوبهای زمان طولانی کار کنند، کاربرد دارد.

  • سیمهای پلاتینی ، وقتی در معرض متیل الکل قرار می‌گیرند، با رنگ قرمز تیره می‌درخشند، درست همانند کاتالیزوری که الکل را به فرمالدئید تبدیل می‌کند. این پدیده به‌صورت تجاری در ساخت فندک سیگار و دست‌گرم‌کنها استفاده می‌شود.

  • Cis-platin با فرمول PtCl2(NH3)2 ، دارویی است که در درمان انواع خاصی از سرطان‌ها که شامل سرطان خون (Lukemia) و سرطان بیضه می‌شود، کاربرد دارد.

دسته بندی : فلزات غیرآهنی